
AD-A091 043 DELAWARE UNIV NEWARK DEPT OF COMPUTER AND INFORMATI -ETC F/6 9/2
A C ASE STUDY IN NATURAL LANGUAGE PROCESSING: THE R US SYSTEM 1Wl
MAY GO8 A W MANSKY F49620-79-C 0131

UNCLASSIFIED AFOSR-TR-80-1035 NL

100

UNQL.ASSIFIEF. _______ DISRCIN
j, SECURITY CLASSIFICATION OF THIS PAGE (When Do,. Entered), . 4 ij.J L1J/! " *" " " INIAD INSTRUCTIONS

REPORT DOCUMENTATION PAG RE COMPLETING FORM

I. REPORT NUMBER 2 OVT IM R I. r'CI WTENT*S CATALOG NUMBER

AFOSR TR. 80-1035, -
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

A CASE STUDY IN NATURAL LANGUAGE PROCESSIN- Interim
T. PERFORMING O1G. REPORT NUMBER

THERUSSYSTEN _____________

7 AUTHOR(&) @. CONTRACT OR GRANT NUMBER(&)

/ // s-L6 -2Y -O~
Arthur William Mansky '04:

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
University of Delaware AREA & WORK UNIT NUMBERS

Department of Computer and Information Sciences
'' Newark, DE 19711 61102F 2304/A2

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Office of Scientific Research/NM May. 1980
Bolling AFB 13. NUMBER OF PAGES

Washington, DC 20332 121
1 14. MONITORING AGENCY NAME & ADDRESS(If different from Controllind Office) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED
IS. OECL ASSI FICATION/ DOWNGRADING

i SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report) . I'

Approved for public release, distribution unlimited. . .

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, it different from Repor w 3'" "

1I. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it necessary and Identify by block number)

RUS, semantic grammar, ATN, case grammar, semantically directed parsing, S.

natural language parsers, ill-formed input

20. ABSTRACT (Continue on reverse side It necessary end Identify by block number)

The RUS system (Bobrow, 1978) is a new parser for English which allows
semantically directed parsing by interleaving calls to a separate, independent
semantic component with syntatic processing in a case-oriented ATN grznmar.
This thesis discusses the syntactic component (RUS), the points at which it
calls a semantic component, and the nature of the syntactic-semantic
interaction occurs, the nature of the interaction, and the structure of the
dictionary are the only assumptions placed on the semantic component.

DD j'oAN 1473 DoITION OF I NOV65 IS OBSOLETE UNCTAqSTFIED

- , , , , . 5 , . : - .-

SECURITY CLASSIFICATION OF THIS PAGE(Whon Dots Entored)

As a step toward building a user-oriented response facility to input that
is not understood, we have developed diagnostic messages associated with the
states of the RUS ATN grammar. A discussion of the general concepts
involved is provided; the diagnostic message facility for each state is
included in an appendix. ZV

tM~iARSTMTI)

-r

A Case Study in Natural Language Processing:

The RUS System cc-''o

T 1,I

U.

,/)))P1*by B_
/ Arthur Willia Mansky.L -bY . .*

An abstract of a thesis submitted to the Faculty
of the University of Delaware in partial fulfillment of
the requirements for the degree of Master of Science in
Computer and Information Sciences.

*This research was sponsored in part by the Air
Force Office of Scientific Research, Air Force Systems
Command, USAF, under Contract No. F49620-79-C-0131. The
United States Government is aut'horized rto eproduce and
distribute reprints for Governmental purposes notwith-
standing any copyright notation hereon.---

May, 1980

Approved: ._
Ralph M. Weischedel, Ph.D.
Professor in charge of thesis

Approved f or pilbl ic release J
distribut Lou nInhimt.

-/12 '~21 038

Abstract

A central design decision in developing a natural

language processing system is its interfacing the syntac-

tic and semantic components. Previous systems generally

can be classed in one of two extremes in relating these

two components. In the first extreme, syntax and seman-

tics are totally separate. Although this allows the cap-

turing of syntactic regularities and modifying of the two

components separately, semantic "knowledge" cannot guide

parsing. In the second extreme a "semantic grammar" in-

cludes both the syntactic and semantic knowledge about a

particular application domain. Although such a system is

very efficient when employed in the domain for which it

was constructed, adding new constructions will not au-

tomatically include their syntactic paraphrases. Further,

changing to a new domain usually requires a complete

rewriting of the grammar.

The RUS system [Bobrow, 19782 falls between these

two extremes. The syntactic and semantic components are

separate, allowing independent modification of the com-

ponents and capture of syntactic regularities, but they

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (A.FSC)
NOTICE OF TRANSMITTAL TO DDC
This techziicnl Pozt il been reviewed an d is
approved f'cr ptt.I rliw.1,e 1AW ApR 190-12 (7b)
DiStributiol, is ulimlited.
A. D. BLOSE
reohncoal Information Off er

- , "--........................-:.,."

interact frequently during the parsing process, allowing

semantic guidance of the parse. Only the semantic com-

ponent need be changed for a new domain to be handled.

This thesis discusses the need for semantic as

well as syntactic knowledge in a natural language process-

ing system and the trade-offs involved in their interface

design. The syntactic and semantic components of the RUS

System are each examined separately; their representation

and function within the system are outlined. The overall

parser operation, with emphasis on the syntactic-semantic

interface, is described. A user's manual gives the de-

tailed steps needed to build the semantic component and

experiment with the system.

As a step toward building a user-oriented error

message facility, we have developed "meanirgs" for many of

the states of the syntactic transition network. A discus-

sion of the general concepts involved is followed by a few

examples with explanation. All of the messages are in-

cluded in an appendix. Another appendix includes the

graph of the transition network.

By having frequent semantic interaction during the

parsing, but keeping the syntactic and semantic components

separate, the RUS System has the flexibility and efficien-

cy that is necessary in a widely applicable natural

language processing system.

A Case Study in Natural Language Processing:

The RUS System*

by

Arthur William Mansky

A thesis submitted to the faculty of the Universi-
ty of Delaware in partial fulfillment of the requirements
for the degree of Master of Science in Computer and Infor-
mation Sciences.

*This research was sponsored in part by the Air
Force of Scientific Research, Air Force Systems Command,
USAF, under Contract No. F49620-79-C-8131. The United
States Government is authorized to reproduce and distri-
bute reprints for Governmental purposes notwithstanding
any copyright notation hereon.

May, 1980

A Case Study in Natural Language Processing:

The RUS System

by

Arthur William Marsky

Approved:

Ralph M. Weischedel, Ph.D.
Professor in charge of thesis on behalf of the
Advisory Committee

Approved:
Hatem M. Khalil, Ph.D.
Chairman of the Department of Computer and
Information Sciences

Approved:
Richard B. Murray, Ph.D.
University Coordinator for Graduate Studies

- 4 t .*

* . -

Table of Contents

I. Introduction 1

II. Syntactic Component 7 11

III. Semantic Component 23

IV. Parser Operation 41

V. Meanings of States 54

VI. Users Manual 65

VII. Conclusion 72

Appendix A RUS ATN Graph 78

Appendix B State Meanings: 5, VP, and NP Groups 86

iii"

Chapter One

Introduction

When computers were first built, few people other

than their designers were able to use them. As program-

ming languages progressed from machine language to today's

high level languages, more people were able to utilize the

power of the computer. Taking this progression to its

ultimate end, communication with the computer would be

carried out as it is between people - via "natural

language". That is, the language people use "naturally";

for us, of course, that is English.

The problem, then, is to build a system that al-

lows the computer to emulate (to some acceptable degree)

our own processing of "natural language" communication.

Perhaps the system might be one to accept typed English

input as a request to the system to perform certain ac-

tions. A database system allowing English queries is a

typical example of this. While this may seem to be only a

small subset of communication between people and comput-

ers, it is one that has been studied for many years, and

has been found to be much more difficult a problem than

many had anticipated.

;1

~rn mi min m m n m m m

2

The system would need to produce, from the English

input, a form from which the intent of the user could be

ascertained. This transformation from English input to a

structured form is known as "parsing". For the system to

"understand" natural language input, two types of

knowledge are needed. First, the system must "understand"

the rules of grammar that people use (usually subcons-

ciously), the categorization of words, the extent of the

vocabulary, and so on. This is syntactic knowledge.

Second, the system must "understard" how meaning is

represented within this structure, how context affects the

interpretation, and so on. This is semantic knowledge.

This marriage of syntax and semantics - the fields of

linguistics and artificial intelligence - is known as

natural language processing.

While the need to know the syntactic aspects of

the input may be obvious, it is less clear that semantics

plays a necessary role. A few examples illustrating the

need for more than Just syntactic knowledge follow.

The first example, from Chomsky, is one of a

countless number of sentences which are grammatically per-

fect but semantically void.

"Colorless green ideas sleep furiously."

Purely syntactic analysis would accept the sentence,

JAI

3

although it would be difficult to imagine any circumstance

under which we would want it accepted. The remaining

examples are not nonsensical sentences, but ones which

require semantics to produce an interpretation nonethe-

less.

Unless we knew the whereabouts of each of the two

men, the sentence

"The two men saw three boats tonight"

is ambiguous. We don't know the total number of boats

seen. Clearly, if it is known that the two men were so

distant from one another that a boat would not be able to

travel from one's visual range into the other's in one

evening, then we know that a total of six boats were

sighted. Without any knowledge of the situation, we car-

not know how many boats were seen.

Nominal compounds are another illustration of the

need for knowledge about the "meanings" of words. Surely

a construction entirely composed of nouns can hardly be

analyzed in great depth using a purely syntactic approach.

"State motor vehicle inspection committee report"

and

"pressure cooker lid whistle adjustment screw"

.

4

are two examples of this. Without knowledge of the in-

spection of vehicles, committees issuing reports, pressure

cooker lids having whistles, and so on, "understanding"

these compounds is hopeless.

Pronoun reference is another issue that is often

unable to be resolved on syntactic grounds alone.

"I threw the big book on the chair and it broke."

"I threw the butterfly wing on the chair and it broke."

The "it" in each of the two sentences above,

refers (most likely) to the chair in the first sentence,

and to the butterfly wing in the second. Certainly the

syntactic structure of the two was not the critical factor

in assigning the referent of "it" (since their syntactic

structures are virtually the same). Our knowledge of

books, butterfly wings, and chairs allowed us to make our

interpretation.

Paraphrase, i.e., using different syntactic struc-

ture, and often, different words, to communicate the same

idea, is another case for semantic analysis in processing

natural language. A purely syntactic analysis, for exam-

ple, would find the following sentences differing in sub-

ject, prepositions used, and so on; while the meaning con-

veyed is virtually the same (except perhaps for which per-

son is emphasized).

I ,Z

5

"Mary bought John a softball from Ted."

"Ted sold a softball to Mary for John."

There are many English sentences for which our

general knowledge of "the world" is insufficient to allow

us to choose only one interpretation. The context would

(hopefully) allow us to determine which of the possible

interpretations is most likely t, be the one that was

meant. One of the classic examples of this is the follow-

ing sentence.

"I saw the man in the park with a telescope."

Among the possible interpretations are:

1. I saw the man who was in the park.

I saw him by using a telescope.

2. I saw the man who was in a park.

The park was the one with a telescope.

3. I saw the man who was in the park.

He had a telescope.

4. I am cutting the man in half in the park.

I am using a telescope to perform this deed.

While reading the above interpretations, the

reader probably chose the interpretation he felt to be the

most likely one (hopefully, not the fourth). This

Emir=

6

choosing of alternatives was not guided by the syntax of

the sentence. Our knowledge of parks and telescopes help

guide us. We quickly eliminate the fourth alternative

(although it could be an acceptable senterce, in a very

strange horror story, for example). We may feel that the

first three are equally likely and would make a decision

among those three based on the context in which the sen-

tence appeared.

As a final illustration of the need for a suffi-

ciently deep semantic component, the following sentence

was input to a translator program, which translated it

into Russian.

"The spirit is willing but the flesh is weak."

When the Russian was translated back into English, the

following was obtained:

"The vodka is strong but the meat is rotten."

The processing of natural language by computer,

then, demands that both the syntactic and semantic aspects

of language are dealt with. The structures through which

syntax and semantics are implemented in the RUS system

[Bobrow, 1978) are discussed in the remaining chapters.

Given that such structures exist, however, the question

becomes: "How are these two components, syntax and seman-

tics, to be combined within a single system?"

I

7

Generally, the goal is to express syntactic con-

straints in a general way while using semantic constraints

to guide the parsing. The design of the RUS System is a

synthesis of two approaches used in earlier natural

language systems, the LUNAR System [Woods, et.al., 1972)

and the SOPHIE System (Burton, 1976). These two represent

two extremes in the way syntax and semantics can be com-

bined in a natural language processing system. The RUS

System attempts to combine the best features of each while

minimizing their shortcomings. First, we will briefly

examine the two previous systems.

In the LUNAR System, the syntactic and semantic

components are completely separate and each has its own

knowledge representation. There are no interactions

between them. In interpreting a sentence, the syntactic

component first produces a parse using a grammar written

in the Augmented Transition Network notation of Woods

(discussed in Chapter Two). The resulting parse tree is

then passed to the semantic interpreter which applies

semantic rewrite rules to the tree and produces the final

interpretation.

There are two advantages to such a system. First,

that the syntactic and semantic components are distinct

allows separate modification of the two. Only the parse

tree format need be "standardized" as that is the only

-.- -*

8

real interface between them. Second, the system has a

substantial ability to capture syntactic regularities.

Modifying the semantic component to allow a new sentence

to be interpreted allows many syntactic variants of the

sentence to be "understood" as well.

However, there are also serious disadvantages to

this design. The most critical problem is the inefficien-

cy arising from the inability of the semantic "knowledge"

in the semantic component to guide the syntactic parsing

process. The semantic interpreter can only accept or

reject the syntactic parse tree. It cannot indicate how

the parsing could be modified to produce an acceptable

structure nor can it guide the parsing process itself in

any way. Also, the semantic component has its own control

structure to scan the parse trees in order to determine

which rules are applicable. The complexity introduced by

this "pattern matching" process further reduces the

overall efficiency of the system.

At the other extreme, the SOPHIE System integrates

the syntactic and semantic processes to such a degree that

there no longer remains a distinction between the two.

This "semantic grammar" approach is a set of grammar rules

that, for each concept, characterizes all of the ways it

can be expressed in terms of other constituent concepts.

There is but one knowledge representation structure

9

encompassing both syntactic and semantic analysis. Clear-

ly, this representation allows semantic guidance of the

parsing process, and therefore, is an extremely efficient

methodology. In a system of this type, if the parser does

anything at all, it produces an interpretation; i.e.,

there is no such thing as a sentence that is parsable but

rot interpretable.

However, because of this complete merger of syntax

and semantics, when developing a semantic grammar for a

new application domain, one often is not able to make use

of the existing grammar. Even though the syntactic as-

pects of the rew grammar might be similar to the old,

because of the tightly merged nature of the representa-

tion, few of the similarities could be applied to this new

domain as well. Also, expanding the grammar semantically

to allow it to handle a larger semantic domain will not

cause it to handle syntactic paraphrases in this new area

unless they are explicitly included. The power of "gen-

erality" of a separate syntactic component is lost.

The RUS System is an attempt to gain the modulari-

ty and ease of modification of having separate syntactic

and semantic components while allowing interaction between

the two to a sufficient degree so as to gain the efficien-

cy of having substantial semantic guidance of the parse.

The structure that results is related to the "case

10

structure" approach [Bruce, 1975) to language and makes

use of a valuable property of English (and possibly all

natural languages) referred to as "incremental parsabili-

ty".

The RUS System, then, is able to capture syntactic

regularities (by having separate syntactic and semantic

components) and allow semantic guidance of the parsing

process as well (by frequent semantic interaction from the

syntactic component as it processes the irput).

The syntactic component consists of an Augmented

Transition Network (ATN) (Woods, 1973) that is compiled by

Burton's grammar compiler (Burton, 1976) and is described

in Chapter Two. The semantic component is discussed in

Chapter Three, while Chapter Four explains the operation

of the whole parsing process, including the interactions

between the two components. A detailed examination of a

portion of the system is presented in Chapter Five, re-

vealing the "meanings" of many of the states in the ATN

and illustrating an error message facility that would be

invoked when a sentence fails to parse. Chapter Six de-

tails the user environment of RUS: how to construct seman-

tic structures, interactive commands to aid the user of

the system, and so on.

I
,=

Chapter Two

Syntactic Component

The syntactic component of the RUS System is a

compiled Augmented Transition Network (ATN) [Burton,

1976). The ATN formalism has been used successfully in

several natural language processing systems and has become

the standard representation for natural language grammars.

It has been argued that it is more efficient, powerful,

flexible and perspicuous than other formalisms [Woods,

19731.

ATN's are based on the abstraction known as the

Finite State Machine (FSM). A FSM is usually represented

as a directed graph which has a finite number of nodes,

each of which is labelled with a unique "state" name. The

arcs between the nodes are labelled with symbols taken

from a finite input alphabet. To process an input string,

the FSM begins at a designated state (the "start state")

and examines the first symbol of the string. A transition

from <state x> to <state y> is made if and only if there

is an arc from <state x> to <state y> whose label is the

same symbol as is currently being examined. If such an

arc exists, the transition to <state y> is taken and the

11

12

input symbol is "consumed" (i.e., removed from the input

string). The string is accepted by the FSM if the machine

stops in one of its pre-designated "final" states and the

entire input string has been consumed; the string is re-

jected otherwise. Finite State Machines accept the class

of regular languages.

The ATH is a FSM that has been modified in two

ways. The first modification is the addition of a recur-

sion mechanism; this new formalism is known as a Recursive

Transition Network (RTN). In the graphical representa-

tion, an arc may now also have a state name as its label.

As in the FSM, if an arc is labelled with a symbol from

the input alphabet, the transition is made if the

"current" symbol is the same as the label. However, if an

arc is labelled with a state name, the transition is made

only if a substring (beginning with the "current" symbol)

can be accepted by the RTN, where processing the substring

begins at the state name given on the arc. That is, for

the transition to be made, a "sub-machine" whose initial

state is giver by the arc label must accept a substrirg

whose first symbol is the "current" one. The addition of

this recursion mechanism brings the power of the transi-

tion network up to that of a pushdown store automaton.

Recursive Transition Networks accept the class of

context-free grammars.

13

The second modification made to the FS4 formalism

4is the addition of registers. Now, in addition to symbols

from the input alphabet and state names, arcs may also

have any number of register setting operations and any

predicate (which may examine the contents of any of the

registers). A transition will now be taken only if the

predicate evaluates to "true" and all of the conditions

for a state transition in a RTN are satisfied. When a

transition is taken, the register setting operations are

performed. The registers may be used to hold any arbi-

trary list structure. Also, immediately before a recur-

sive transition is made as described above, the current

register values are saved and a new set of registers is

created. The new registers are initially empty unless

they are initialized to some value by the register setting

operations on the arc that initiated the recursion. When

the "sub-machine" accepts the substring, the value associ-

ated with acceptance of the substring is returned and the

original register values are reinstated. The saving and

restoring of the register values may be thought of as

pushing the values on to and popping the values off of a

stack. (In fact, the recursive call is made through a

PuSa and th* recursion ended via a POP, as is discussed

below). The Augmented Transition Network, then, is a Fin-

ite State Machine with two additions, recursion (giving us j

a Recursive Transition Network) and register settirgg 4

iI

" • # 4.. ;' ' .

14

operations along with predicates. ATN's are equivalent to

the class of automata known as Turing machines.

The Augmented Transition Network used in the RUS

system syntactic component is based on the one described

by Woods. As mentioned previously, to improve efficiency,

the ATN is compiled and executed (as opposed to being

interpreted). Rather than allowing any formulation of

arcs, special arcs were designed to increase the ease with

which ATN's may be written (and understood) by the user.

The RUS ATN utilizes six "types" of arcs, each of which

are described below.

(WRD <word or list of words>

<condition><action>*(TO <state>))

In the WRD (word) arc, the first word of the input

string is compared to the <word or list of words>. If

there is just one <word> in the arc, the two are compared;

if there is a <list of words>, the word from the input

string is compared with each word in the list until a

match is found or the list is exhausted. In either case,

if there is a match, the <condition> is evaluated. If it

is "true" (i.e., evaluates to a LISP non-NIL value), then

the <action>* is performed. The star (*) in this notation

is the Kleene star and indicates an arbitrary number (pos-

sibly zero) of items. Hence, <action>* represents zero or

more actions. The actions may be register setting!I

s

operations, calls to the semantic component (as discussed

in Chapters Three and Four), or invocations of special

actions which change the standard flow of control (as is

discussed later in this chapter). Finally, the TO action

causes the transition to be made to the specified <state>

in the network.

(CAT <category><condition><action>*(TO <state>))

The CAT (category) arc is similar to the WRD arc

except that the syntactic category of the input word

(which is found in the word's entry in the dictionary) is

compared with the category named by <category>.

(JUMP <state><condition><action>*)

The JUMP arc allows transition from one state to

another without consumption of the input. If the <condi-

tion> evaluates to a non-NIL value, the <action>* is per-

formed and a transition is made to state <state>. Since

none of the input string is consumed, the state to which

the transition is made may be thought of as a continuation

of this state. In other words, the JUMP are allows states

to be structured in a way that may make the overall design

of the ATN clearer, but it is not a necessary arc to have.

Any ATN with JUMP arcs can be rewritten to an equivalent

ATN without JUMP arcs. However, the state structuring

freedom it allows is helpful in making the ATM more

i .f[_ __...,.. -~ _ t

16

organized.

(PUSH <state><cordition>(!<action>*)

<action>*(TO <state'>))

The PUSH arc is the recursive mechanism for the

ATN. If the <condition> is true, a recursive transition

is made to state <state>. The original register values

are saved and a new set of registers are instantiated.

The actions preceded by the exclamation point are "preac-

tions"; they are performed before the transition is taken

and typically assign values to the otherwise empty "new"

registers at the lower level. When the substring is ac-

cepted by the subnetwork (if, indeed, it is) then the ori-

ginal register set is restored and the actions (other than

the preactions) are performed, ending with the transition

to state <state'>.

(POP <form><condition><action>*)

The POP arc indicates a final state. If the <con-

dition> is true, the actions are performed and the <form>

(a LISP expression) is evaluated. Its value is then re-

turned to the PUSH arc that began the series of states

that ended with this POP. The register values at this

level are discarded and the original values reinstated

before the return to the PUSH arc. The execution of a POP

at the top level of the ATN indicates that the input

WON

17

string was accepted (i.e., we have a successful parse) as

long as the entire input string has been consumed.

(VIR <constituent rame><condition><actions>*(TO <state>))

The VIR (virtual) arc is used in conjunction with L
the HOLD action (described later in this chapter) to han-

die displaced constituents. If a constituent of the type

<constituent name> has been placed on the hold list by a

previous HOLD action, and the <condition> is true, then

the constituent is removed from the hold list, the actions

are performed, and the transition is taken to state

<state>.

In addition to these six arc "types", the RUS ATN

has a GROUP "super-arc". It has the following form.

(GROUP <arc 1> <arc n>)

The GROUP structure groups any number of arcs

within any state together. As soon as the first state

transition via one of the GROUPed arcs succeeds, none of

the other arcs within the GROUP are tried. When arcs

within a state are not GROUPed, the parser must provide

back-up to that state. In many cases, though, there are

states in the ATN that are not non-deterministic branch

points. That is, there is at most one arc from that state

that any given sentence can traverse. The GROUP arc al-

lows the arcs in that state to be combined in order to

...............

18

signal the ATN Compiler that the state is actually a

deterministic "choice-point", not a potential "branch-

point". Any number of arcs within a state may be GROUPed.

The six arcs described above, along with the GROUP

"super-arc", are. the building blocks of the ATN. While

the arc types and conditions constitute the primary flow

of control mechanism in the ATN, the actions within the

arcs actually build and manipulate the structures that the

parser outputs. Some of the more common actions are

described below.

The registers are the main mode of communication

in the ATN. A state may set the values of certain regis-

ters to indicate what "knowledge" it has about the input;

the values may then be examined at the next state to

determine the flow of control from that point. Thus, an

action that sets register values is among the most basic

(and necessary) actions in an ATN.

(SETR <register> <form>)

The SETR (SET Register) action sets the register

<register> to the value of the expression <form>

(described below).

When a PUSH arc is taken, a new set of (empty)

registers is created. The SENDR preaction allows the set-

ting of a register at the lower PUSHed level from the

.......................... ''.2-

19

present level.

(! (SENDR <register> <form>))

The SENDR (SEND Register) preaction is like SETR, except

that the <register> is not set at the current level, but

one level down, in order to initialize a register for the

"sub-network" that was PUSHed.

(ADDR <register> <form>)

(ADDL <register> <form>)

The ADDR (ADD Right) and ADDL (ADD Left) actions

modify the value of <register> by adding the value of

<form> to the left or the right of the list that is the

current value of <register>. The ADDL action may be

thought of as a LISP CONS with the value of the <form> as

the first argument and the current value of the <register>

as the second argument.

(HOLD <form>)

The HOLD action is used in conjunction with the

VIR arc to handle displaced constituents. This action

places the value of the expression <form> on the hold

list. As described earlier in this chapter, the VIR arc

examines the hold list to see if there is a constituent of

a particular type (NP, PP, etc.) being held.

Some of the more frequently used types of <form>s

1~.i i

20

in the above actions (and in the POP arc) are described

below.

(GETR <register>)

GETR (GET Register) returns the value (contents)

of the register <register>. (SETR <reg 1> (GETR <reg 2>))

would set the contents of <reg 1> to be equal to the con-

tents of <reg 2>.

The <form> "" is essentially a special register

that points to the current item being scanned. If the ,,

appears in an action of a PUSH arc, or in a condition or

an action of a VIR arc, then its value is the result of

the embedded computation (if a PUSH) or the constituent

being removed from the hold list (if a VIR). Otherwise,

the ,*,, has as its value the root form of the currently

scanned word of the input sentence. LEX is a <form> whose

value is the current input word itself.

(BUILDQ <template> <argument list>)

BUILDQ is the basic data structure construction

<form>. As the parse proceeds, the system records its

findings in registers. These "findings" are LISP data

structures of some complexity; BUILDQ is the primary data

structure builder. Depending on the <template>, the ele-

ments of the <argument list> are treated in various ways,

as shown below.

21

Template Element Interpretation

#I Replace with the value of the
corresponding member of the
<argument list>

Replace with the "current"

structure

Use the corresponding member
of <argument list>
(unevaluated) as a register
name

Replace with an expression
equivalent to the value of
the <argument list> minus one
outer layer of parentheses

!I Same as ! above except that
it modifies the <argument list>
member

As an illustration of BUILDQ, if register HEAD has

the value "ALUMINUM"; the variable CLASS has the value

"NOUN"; the variable KIND has the value "(MINERAL)"; and

the current input word is "SAMPLE", then

(BUILDQ (HEAD + CLASSIFICATION # MATERIAL

! # THING *) HEAD CLASS KIND)

would return the following form as its value:

(HEAD ALUMINUM CLASSIFICATION NOUN

MATERIAL MINERAL THING SAMPLE).

In addition to the register-setting actions above,

there are four actions which influence the flow of control

of the ATN. The ABORT action causes the present

= -

22

configuration (parse path) to be stopped, and an alterna-

tive tried. The SUSPEND action provides a way to change

the "weight" (likelihood of success) of the current confi-

guration. This causes the configuration to be removed

from active "status" and placed on the alternatives list.

The most recent alternative with the best "weight" (possi-

bly this same one) then becomes active. The RESUME action

allows a lower level network that has already popped to

resume processing input words from a later place in the

input sentence (for handling extraposition). The RESUME

simulates a PUSH to (recursive call of) the named state.

The WAIT action is similar to the SUSPEND action except

that the configuration "weights" are not charged. All

alternatives are tried during the WAIT time. If no path

was successful, then the "delayed" configuration contin-

ues.

In addition to all of the actions described above,

calls to the semantic component are also among the possi-

ble actions in an arc. The next chapter describes the RUS

semantic component; Chapter Four details the operation of

the parser including how and where these semantic calls

are used to guide the parse.

OILL_

Chapter Three

Semantic Component

The semantic component of the RUS System is ex-

pressed in the form of a "case frame dictionary". The

semantic "knowledge" in the dictionary is retrieved and

processed through the use of a set of functions (described

later in this chapter) that may be thought of as forming a

"case frame interpreter".

The case structure concept has been successfully

used in a number of natural language processing systems

[Bruce, 1975). The fundamental idea is that each word has

a certain fixed number of relationships with other words;

it can play only certain roles in a sentence. Which roles

(or relationships) it fills depends on the context in

which it appears.

The "case-oriented" semantic interpretation rules

of the RUS System are associated with those words that can

be HEADs of a syntactic unit (the main verb of a verb

phrase, the main noun of a noun phrase, etc.). The ra-

tionale for defining rules for the HEADs of phrases is the

way the overall syntactic/semantic parsing process

23

24

operates. The semantic "checks" are made on a syntactic

unit using the HEAD of the unit as the main element.

Also, the cases of any word must be chosen from a list of

available "case keys" NMark, 1980). These are syntacti-

cally determined keys, since the ATN must supply them.

The parsing process, including the syntactic/semantic

interaction, is discussed in detail in the following

chapter.

The case frame for a word is placed on the word's

property list under the CASESTRUC property. An individual

case frame may be related to other case frames (i.e.,

semantic "knowledge" about other words) through an "irher-

itance" network. The form of the case frame determines

the type of inheritance, if any.

Every case frame is either a list of clauses or a

single atom. There are two types of clauses that can

appear in the list-type case frame. The first kind of

list-type clause defines a "case slot". This contains a

"case key" (or list of "case keys") followed by a list of

actions to be performed. The case key identifies the kind

of slot. There are approximately thirty-five different

slots Tor nouns, verbs, and prepositions. They are listed

along with examples in the General Motors Report [Mark,

1980). The actions to be performed are semantic tests,

which check the validity of the syntactic constructs being

- -

25

proposed to fill the slot, and register assignments, which

implement the semantic interpretation of filling the slot.

The second kind of list-type clause consists of a

special atom (CV', *PPCASES*, *PREMOD*, or *POSTMOD*) fol-

lowed by the name of another dictionary entry. This indi-

cates the sharing of case frames. It allows the current

case frame to continue, using the cases of the entry named

after the special atom. The special-atom/dictionary-entry

statement may also be used as the last action within a

clause. In that case, the current slot continues using

the cases of the named entry.

If the whole case frame is just a single atom,

then complete sharing is indicated. The atom must be the

name of a different dictionary entry; it indicates that

the case frame of this word is exactly the same as that of

the named word.

These forms provide explicit linking between dic-

tionary entries. Words in the application domain are

"semantically similar" if they are connected in this in-

heritance network.

Another kind of inheritance in the dictionary is

the SUPERC link. This allows the dictionary to be divided

into a hierarchy of classes. If "pencil" has a SUPERC

link to <writing-utensil>, then "pencil" is in the class

26

<writing-utensil>. (Words within the brackets are classes

of objects. Their dictionary entries are of the exact

same form as those for words.) In addition to defining

the class relationships of words (or other classes),

SUPERC can define the class relationships of phrase struc-

tures as well. SUPERC uses the FRAMETYPE of a phrase

structure to represent it in the hierarchy of classes.

FRAMETYPE is a semantic register that is set by the case

frame of the HEAD of the phrase. This is an extremely

powerful and useful facility, since it allows groups of

words (not just single words) to participate in the inher-

itance network. Therefore, concepts that can only be

expressed in more than one word can still be a part of the

network. As there are many such concepts in English, this

is an important feature in a knowledge representation

scheme. Semantic "knowledge" about dictionary entries

(words and concepts), then, can be shared partially, to-

tally, or within a "subconcept-superconcept" relationship.

Each case frame is listed under one of six "pro-

perties" that are within the CASESTRUC.

PREMODCASES (for nouns)
POSTMODCASES (for nouns)
PPCASES (for prepositions)
ADVERBCASES (for adverbs)
DETERMINERCASES (for determiners)
VERBCASES (for verbs)

These "case types" are used by the semantic function calls

within the ATN to specify which set of rules are to be

27

used. The calls will also specify the slot type. These

two pieces of information determine the set of actions

that will be carried out.

A RUS-oriented lexicon was not available to us;

however, another lexicon with a few simple "default" se-

mantic rules allowed us to parse simple phrases. An exam-

ination of these CASESTRUCs will give the flavor of the

notation; they are so basic as to be almost meaningless as

examples of "semantic" rules.

(<NP>
CASESTRUC

(PREMODCASES ((HEAD (T (<= HEAD ")
($ (T (E - CASEKEY *))))

POSTMODCASES (($ CT (E - CASEKEY "1)
DETERMINERCASES (($ (T-(<= DETERMINER (BUILDQ

(DETERMINER CASEKEY #
DETERMINER *)
CASEKEY)))))))

(<VP>
CASESTRUC

(VERBCASES (((HEAD SUBJECT OBJECT INDOBJ POP
NEG POSTRULES)
(T (E<= CASEKEY)))
($ (T (E_- CASEKEY *))))))

(<PP>

CASESTRUC
(PPCASES (($ (T (E<= CASEKEY))))))

Three kinds of case slots are illustrated. A sin-

gle case key-ed slot (the first slot of <NP> PREMODCASES),

a multiply case key-ed slot (the first slot in <VP>

VERBCASES), indicating that the rule is to be applied if

the case key is among those listed, and a "catch-all" (the

"$" slots) slot which is applicable regardless of the case

ti
- .. I.-.... ..-

28

key.

Following the case keys is the list of actions to

be performed. If any in the list are unable to be per-

formed (NIL in value), then no assignments are made usirg

that particular set of actions. Another set of actions

may be applied (if there is a "$" rule).

The first "action" in each of the above examples

is, the trivially true "T". The second action in each is

an assignmert of the structure that was given (to be put

in a slot) to a "semartic register". The two registers

HEAD and DETERMINER are explicitly named; in the others,

the value of the case key that was requested by the syn-

tactic component is the name of the register to be filled.

Notice that the structure assignment functions begin with

"E" when used with CASEKEY and do not when the register is

explicitly named. The "E" indicates that the first argu-

ment (CASEKEY) is to be EVALuated to determine the name of

the register to which the assignment is to be made.

The five "assignment operators" all assign a value (a

list structure representing an interpretation) to a regis-

ter. However, they differ in the way the structure is

treated (listified, i.e., placed inside a pair of

parentheses, or not) and in the way the register takes the

assignment (replace or append) as shown below.

29

structure to be assigned register it is assigned to

not listified appended
- listified appended

not listified replaced
<<-- not listified replaced
<= not listified register is set to NIL if it

was already assigned a value

No distinction in the way the "operators" <== and <<=-

make the assignment was found by me. The "assignment

operators" _-, <z, and <== have "E" equivalents (E_-, E< ,

and E<==) that EVALuate the first argument. This allows a

structure to be assigned to a register (usually given by

the value of CASEKEY) without the name of the register

being explicitly written in the CASESTRUC rule.

The semantic "knowledge" in the system, then, is

represented by the case frames as described above. The

"case frame interpreter" is a set of functions that re-

trieve and process this semantic "knowledge." The top

level functions that assign a semantic interpretation to a

phrase are called from the ATN. (Where this is done is

discussed in the following chapter.) All of these func-

tions are similar to the function ASSIGN.

(ASSIGN
<component> <casehead> <key> <casetype>

<notassigrnflg> <syntaxcasekey>)

<component> the phrase to be put in a slot
<casehead> the head of the phrase
<key> the CASEKEY
<casetype> one of the six properties:

POSTMODCASES, VERBCASES, etc.
<notassignflg> if non-NIL, no register assignments

are made

30

<syntaxcasekey> a more general CASEKEY; used with
<key> to make a "non-standard"
CASEKEY

When the ASSIGN function is called, the case frame

of <casehead> is searched for the CASESTRUC property

<casetype>. If the property is found, the list of slots

is retrieved. The slots are then searched (by examining

the case keys) to see if one is of the type <key>. If the

appropriate slot is found, the tests and register assign-

ments are executed. If any of them cannot be successfully

completed (return non-NIL), then the assignment fails at

that slot and all of the actions that were successful are

undone; however, processing of the frame continues as

there may be another acceptable slot to try. If all of

the actions are successfully completed, ASSIGN returns a

value of "T" (true) and the register assignments are made;

<component> has been successfully placed in a slot, i.e.,

it has been "understood".

If the above process fails because of the absence

of an applicable slot, then the HEAD word cannot have the

suggested relationship with any phrase. If it fails be-

cause all of the actions in an applicable slot could not

be successfully completed, then the HEAD word cannot have

the suggested relationship with the particular phrase

<component>.

Generally, the presence or absence of a slot and

o .

31

the tests (within the actions) of a particular slot embody

the semantic "knowledge" of the application domain. The

semantic checking of the RUS System is totally concentrat-

ed into the case assignment process. To move to a new

application area, then, the user must define the words in

the new domain by choosing slots, defining semantic tests

to determine which concepts can fill a slot, and con-

structing register assignments that reflect the filling of

the slot by the concept, i.e., that the concept was "un-

derstood".

The ASSIGN and ASSIGNQ functions are the invoking

functions of the "case frame interpreter". The remaining

portion of this chapter describes the case structure ac-

cess and manipulation functions which the two use to as-

sign a "meaning" to a phrase. They are usually called

only by ASSIGN and ASSIGNQ and their sub-functions, not

from within the ATN.

The functions ASSIGN and ASSIGNQ differ only

slightly. ASSIGN calls the function GETKEY which returns

the list of actions in the requested case structure slot.

ASSIGN then takes this result along with its <component>,

<key>, and <notassignflg> parameters and invokes the func-

tion ASSIGNCASEbyKEY. (In other words, GETKEY retrieves

the appropriate case slot and ASSIGNCASEbyKEY "executes"

it with the given component.) ASSIGNQ also does the

.t.P

-. - .. "- ' -S " "-" : "..

32

above; and, in addition, places the value of <component>

in the register SYN/SUBJECT if the <key> is SUBJECT or in

the register SYN/OBJECT if the <key> is OBJECT. If the

<key> is neither of the above, then ASSIGNQ is identical

in action to ASSIGN, except that the third argument of

ASSIGNQ is QUOTEd, i.e., not EVALuated.

The function GETKEY retrieves the list of actions

from the appropriate case slot by using the functions

GetPATH, GetINHERITEDCASE, and FINDKEY. Each of these are

discussed below.

The function GetPATH takes a list as its argument.

The CAR (first element) of the list is EVALuated; the

function GetPATH1 is then called with the EVALuated CAR as

the <gramitem> and the CDR (remaining elements) of the

list as the <searchlist>.

(GetPATH1 <gramitem> <searchlist>)

GetPATH1 can be used to return the value of a par-

ticular property of a structure. This means that <grami-

tem> (perhaps the contents of a particular register) is

searched for the value of its <searchlist> property. For

example, if <gramitem> is '(HEAD NOUN ALUMINUM LEX

ALUMINUM NUMBER SG) and <searchlist> is 'NUMBER, then the

call to GetPATH1 will return "SG".

GetPATH1 can also be used to find the Nth element

. a .- '.i

33

of a list. This means that <gramitem> is searched to find

its <searchlist>th element. For example, if <gramitem> is

the value of a register such as PREMODS, which may hold

any number of premodifiers of the head noun, and <sear-

chlist> is 1, then the call to GetPATH1 will return the

list that represents the first premodifier.

GetPATH1 can also be used to return the value of a

word's CASESTRUC property. This means that if <gramitem>

is a <word> and the <searchlist> is (: <property>), then

the value returned is the value of the <property> property

under the CASESTRUC of the word <word>. If the searchlist

is (:E <property>) then <property> is EVALuated first to

get the property name. For example, if <gramitem> is

'SHOW and <searchlist> is '(: PREMODCASES), then GetPATH1

will return the PREMODCASE CASESTRUC for SHOW.

Any (or all) of the three ways of using GetPATH1

described above can be combined by placing the <sear-

chlist> elements together into a "super" <searchlist>.

Beginning with the first <searchlist> element, the value

determined by the element is found (as described above)

and is used by the next <searchlist> element. This left-

to-right evaluation continues until the last <searchlist>

element is used. For example, if <gramitem> is 'ALUMINUM

and the <searchlist> is '(: PREMODCASES 2), then GetPATHI

will return the second slot in the PREMODCASE CASESTRUC

34

for ALUMINUM.

In GETKEY, GetPATH is used to "reduce" a register

value to its HEAD word and to find the word's generic

class (<NP>,<VP>,etc.) if necessary.

The function GetINHERITEDCASE is also used in

GETKEY.

(GetINHERITEDCASE <frame> <case>)

GetINHERITEDCASE returns NIL if there is no CASESTRUC for

the word <frame> or if the CASESTRUC has no rules under

the property <case>. Otherwise, it returns the entire

"rule set" listed under the property <case> of <frame>'s

CASESTRUC. For example, (GetINHERITEDCASE 'SYSTEM

'PREMODCASES) will return the PREMODCASES CASESTRUC for

the word SYSTEM or NIL if there is not a PREMODCASES

CASESTRUC or no CASESTRUC at all.

The function FINDKEY is also used in GETKEY.

(FINDKEY <key> <searchlist>)

FINDKEY returns the list of actions under the <key> case

key from the <searchlist> "rule set". The <key> is the

case key being searched for and <searchlist> is the value

of one of the caseframe properties (POSTMODCASES, etc.).

The <searchlist> is the result of a call to

GetINHERITEDCASE described above. FINDKEY looks for the

qQI

j- 35

appropriate "action list" in the following way: while

there is still a rule to be examined, its first "element"

is checked. If it is one of the special indirection atoms

(*PREMOD*, V*, etc.), then the new set of rules is re-

trieved by calling GetINHERITEDCASE for the word named

after the special atom. Otherwise, if the first "element"

of the rule is equal to "$" (the special "any-ease" sym-

bol) or the given <key> or if the <key> is among those

listed in the first "element" of the rule, then the rest

of the rule is returned as the value of FINDKEY. If none

of the above are true, then the process is repeated for

the next rule. This process is repeated until an applica-

ble rule is found, or the "rule set" is exhausted and a

NIL is returned.

GETKEY uses GetPATH, GetINHERITEDCASE, and FINDKEY

to retrieve the appropriate "action list" in the following

way.

(GETKEY <key> <word> <keytype>)

It first calls GetPATH as many times as necessary to get

to the single word that is the head of the structure

<word>. Then, a call to GetINHERITEDCASE and FINDKEY

using <key> and <keytype> (<keytype> to specify the

CASESTRUC subproperty to GetINHERITEDCASE) will result in

the "action list" requested or NIL. If the result is NIL,

the process is repeated with a call to GetPATH to find the

-, :,.. _ ,, _,:t. _.,

36

generic <keytype> definition of the word <word>. Using

the current lexicon, this means, for example, that the

PREMODCASES CASESTRUC for <NP> will be used instead of the

one for ALUMINUM, because one for ALUMINUM has not been

written. That is, the invoking of GETKEY via

(GETKEY 'HEAD 'ALUMINUM PREMODCASES)

will cause the following:

1. Since the <word> is not a list,

GetPATH is not called.

2. GetINHERITEDCASE is called and returns

NIL, since there is no CASESTRUC for

ALUMINUM.

3. FINDKEY uses the result from

GetINHERITEDCASE to find the appropriate

"action list", but since that result was

NIL, this result is NIL.

4. Because the first call to FINDKEY was

NIL, the two functions are called again,

below.

5. GetINHERITEDCASE is called, but this

time, using the generic <NP> instead of

the word ALUMINUM. (This was found via

GetPATH.) The PREMODCASES of <NP> are

37

returned as the result.

6. FINDKEY uses this result, searching

through it for an "action list" under the

HEAD case key. It is found and returned

as the value of FINDKEY and, therefore,

the value of the call to GETKEY itself.

GETKEY, then, is the function that retrieves the appropri-

ate "action list". The ASSIGN (or ASSIGNQ) function can

now call ASSIGNCASEbyKEY to try to make the "semantic

interpretation" assignment.

(ASSIGNCASEbyKEY <casekey> * <caseframe>
<noassignflg> <leftaddflg> <resetusedregs>)

The arguments to ASSIGNCASEbyKEY have the follow-

ing meanings:

<casekey> the <key> from ASSIGN
• the <component> from ASSIGN

<caseframe> the "action list" returned from
the call to GETKEY

<noassignflg> the <notassigrflg> from ASSIGN
<leftaddflg> (not used by ASSIGN)
<resetusedregs> (not used by ASSIGN)

To summarize the progress of the assignment action up to

this point, the appropriate "action list" has been found.

We now want to evaluate the list, hoping that all tests

and actions are successful so that the assigning of an

"interpretation" to the <component> under this HEAD word

can be made.

ASSIGNCASEbyKEY proceeds by examining the first

38

"element" of the "action list". If this is one of the

special indirection atoms (*PREMOD*, *V0, etc.) then the

<caseframe> becomes the one for the word named after the

special atom. In other words, the "action list" is now

the appropriate one for the named word. (This is done by

calls to FINDKEY and GetINHERITEDCASE.) The procedure is

re-started (by using the CLISP "while") so as to allow any

number of indirections before a real "action list" is

found. Once one is found, a "T" is returned only if one

of two conditions are true:

1. All of the actions evaluate to non-

NIL. (This is the usual successful situa-

tion) or

2. The ACCEPT/IT/FLG is "T" (it is "T" if

not changed), and the component to be

assigned (0) is a list, and either its

FRAMETYPE is <DUMMY> or <ELLIPSIS> or it

has more than one HEAD sublist and the

first HEAD is a PRONOUN.

Otherwise, the value returned by ASSIGNCASEbyKEY to ASSIGN

(or ASSIGNQ) is NIL.

The functions described above are the primary

functions of the semantic component. Some of the other

functions (most of which use these) are briefly described

below.

39

ASSIGNDET uses GetPATH and ASSIGNQ to construct

the total determiner structure in DET and check it semant-

ically to be sure that it can be the determiner with the

HEAD noun.

ASSIGNVERBCONSTITUENTS takes a list of adverbs,

question-adverbs, adjuncts, and other constructs and then

calls ASSIGN with the HEAD verb (and VERBCASES) for each

one.

BuildDET builds the structure that represents the

determiner by combining the articles, possessives, quanti-

ties, ordinals, superlatives, simple determiners, and

negative determiners.

BuildPP builds the structure that represents the

prepositional phrase. It uses ASSIGNs to be sure that the

head preposition, the prepositional object, and the prepo-

sition within the phrase (if any) all check semantically.

InterpBNP interprets the base noun phrase by cal-

ling ASSIGN for each of the premodifying phrases.

There are also fifty-six GRAMTESTFNS (grammar test

functions) that are used in the conditions of the ATN.

These functions perform "lookahead", i.e., check to see if

certain syntactic constructs (words or phrases) could be

next, and check the features of the words that the ATN

encounters. These grammar test functions add a great deal

of power to the condition checking on the arcs of the ATN.

40

In summary, the semantic component of the RUS Sys-

tem consists of special data structures that represent the

semantic "knowledge" about words in the application domain

(the "case frames"), and a group of functions that analyze

this "knowledge" to produce the register assignments that

represent the "understanding" of the input (the "case

frame interpreter").

£

Chapter Four

Parser Operation V

The two preceding chapters described the syntactic

and semantic components of the RUS System in detail. Each

component was explained while avoiding a discussion of the

other as much as possible. The RUS System parses a sen-

tence, of course, using information from both comporents.

This chapter describes the overall parsing process: how

the ATN deals with alternative paths, the RUS parsing

"strategy", features to improve efficiency, the lexical

prepass, the interactions between the two components, and

the final output of a successful parse.

The ATN grammar compiler produces code that

traverses the ATN using a depth-first control structure

[Burton, 1976]. At any given state, the arcs are tried

one at a time in the order that they appear there. The

first arc that succeeds is taken and an alternative "con-

figuration" (which will try the remaining arcs) is pushed

onto the alternatives stack. If a "configuration" blocks

(i.e., none of the arcs leaving the state succeed), then

the top "configuration" on the alternatives stack is ini-

tiated. (The "normal" control structure of the ATN as

41

42

described above can be altered through the use of the spe-

cial actions ABORT, RESUME, WAIT and SUSPEND as discussed

in Chapter Two.) A "configuration" is a data structure

that completely characterizes the state of the processing.

A typical "configuration" might contain the following:

Configuration Number unique to this configuration; used
to identify it in paths, an
alternative lists, etc.

State identifies the state in the
grammar being examined and also
indicates which arc within that
state is under consideration.

Node a pointer to the input.

Stack a pointer to higher levels of the
ATN that PUSHed to the present
level.

Regs a pointer to the list of registers
available to this configuration.

Feats a pointer to a list of feature
registers.

Hold the hold list of constituents that
are still unassigned.

When transitions are made from state to state,

only a few registers are usually changed. Each configura-

tion must "know" the values of all of the registers; but

storing all of the register values with each configuration

would take up a great deal of memory. To handle this, the

register-name/register-value pairs are stored on a "forked

stack". This is a merged list data structure where the

register values common to a group of configurations are

stored once, and those specific to a particular

43

configuration are stored with a pointer to the "common"

list. Thus, only the pointer to the beginning of a

configuration's register list is needed to obtain a com-

plete record of the current register contents there.

The goal of the whole parsing process, of course,

is to produce a representation of the interpretation of a

phrase by representing the interpretations of its syntac-

tic units and the relationships between them. The ques-

tion is: "Can the interpretation of a phrase be built up

from interpretations of its 'parts' as the parsing

proceeds, or must all of the 'sub-interpretations' be made

before an overall interpretation can be?" That is, either

syntax or semantics (or both) may be "wholistic" rather

than "incremental" processes. The results obtained in the

RUS System indicate that English is, to a large extent,

able to be parsed (and interpreted) in an incremental,

left-to-right way. There is a large class of syntactic

relations which can be determined incrementally; and these

are sufficient to provide the necessary information to

semantics. That is, as the syntactic role of a consti-

tuent in the total unit is determined, the semantic in-

terpretation is constructed. The two processes are close-

ly linked, not only because the semantic component uses

the results of the syntactic component incrementally, but

also because the ability of the syntactic component to

assign syntactic roles without considering the roles of

44

all other constituents is based on its ability to "check

with semantics" to see whether or not a possible syntactic

assignment "makes sense". There are some phenomena in

English that cannot be handled in a strictly incremental

way (such as extraposition), but they are able to be han-

dled by simple extensions to the incremental scheme (VIR

arcs and HOLD actions).

Four major features have beer added to the basic

ATN structure in an effort to increase the efficiency by

making the parsing process as deterministic as possible.

The amount of non-determinism is reflected (partially) in

the amount of back-up that occurs wile parsing a sentence.

The basic ATN structure is a non-deterministic mechanism;

each arc traversal is thought of as a "branch-point" - the

parser must be able to back-up and try alternative paths.

A truly deterministic parser regards each state as a

"choice-point", where a (correct) choice must be made,

without allowing back-up to that state.

The first added feature is the GROUP arc. As dis-

cussed in Chapter Two, this allows the grouping of arcs

within any state into a deterministic "super-arc".

The second added feature is "look-ahead". At many

points in a typical ATN, there is the possibility of a

certain type of constituent that will, therefore, be

PUSHed for. That. this constituent type is expected is

* w

45

usually based only on the structure that has been found so

far. However, such a PUSH should be avoided if the

current word (or the next few words) precludes that type

of constituent. For example, even though a noun phrase

might be here ("hypothesis-driven" approach), we would not

PUSH for it if the next word clearly precludes its pres-

ence ("data-driven" approach); e.g., a noun phrase would

not begin with a preposition or conjunction. It was found

that looking no further than three words ahead is suffi-

cient to prevent "obviously" incorrect PUSHes; in fact,

often the next word is sufficient. Although there are

cases where the three word look-ahead is not sufficient,

they are relatively rare [Bobrow, 1978).

The third added feature involves a change to the

depth-first control structure of the ATN. If we PUSH for

a constituent and the result is semantically unacceptable,

we must still allow for the possibility that a semantical-

ly acceptable constituent exists but that the first one

discovered by the PUSH is not it. Because of the control

structure of the ATN, all alternative possible consti-

tuents of the desired type will be found before any alter-

natives to the PUSH are tried. This assumes that it is

more likely that there is a constituent of the desired

type here which will fit into the current phrase than that

the first semantically acceptable constituent of that type

will fit somewhere other than in the current phrase.

46

However, as the parser becomes more deterministic, the

latter is more likely to be true; i.e., the first semanti-

cally meaningful result returned from a PUSH is likely to

be the best description of what occurs there. As an

illustration, the parser may be analyzing the sentence

"LIST THE ALUMINUM SAMPLES ON THE UPPER HALF OF THE

SCREEN". While the parser is processing the noun phrase

that begins with "THE ALUMINUM SAMPLES", it will hy-

pothesize a prepositional phrase, and find "ON THE UPPER

HALF OF THE SCREEN". Although this is the correct prepo-

sitional phrase to find at this point, it is not one that

modifies "THE ALUMINUM SAMPLES". Under the normal ATN

control structure, all other possibilities for preposi-

tional phrases will be explored. Many useless parses may

be generated before it is eventually decided that the noun

phrase has no prepositional phrase modifiers and that the

prepositional phrase actually modifies the clause. To

avoid this, the control structure of the parser was

changed so that the parser will produce only the first

semantically acceptable result of a PUSH. If that is

rejected as not "making sense" as a constituent of the

current phrase, other branch-points which would produce

alternative results for the PUSH are not tried until all

other alternatives have been tried. In the above example,

rather than trying to interpret the prepositional phrase

differently, other alternatives (such as the end of the

47

noun phrase) are tried. Now, however, it would be dupli-

cating work to make the higher level (clause) network re-

interpret the prepositional phrase that was already exam-

ined by the lower level (noun phrase) network.

The fourth added feature allows some of the work

performed by the first attempt to parse a sentence to be

re-used by the later attempts. The Well-Formed Substring

facility (WFS) holds a popped constituent along with other

information to ensure that the new PUSH that wants to use

the result of an earlier PUSH has the same context.

These last two features allow a syntactically

correct structure that was hypothesized at the wrong level

of the network to be saved. Then, if the higher level

PUSHes for the same type of constituent at the same place

in the input, the previous result is found without further

parsing. This eliminates the re-analyzing of a phrase

that would otherwise result.

When a sentence is submitted to the RUS System to

be parsed, it is first analyzed by a function that makes

sure that a dictionary definition of each word in the sen-

tence is in core. This "lexical prepass" expands abbrevi-

ations, combines words into compounds, performs a morpho-

logical analysis to produce canonical versions of words,

and finds grammatical categories and features of words.

Some examples of mappings that the lexical prepass

Li ia

48

performs are shown below.

HIS - > HE'
,AND ------ > AND

UNITED STATES ------ > UNITED-STATES
THINGS ------ > THING (PLURAL)

The prepass categorizes each word of the input

into lexical categories such as: N (noun), V (verb), ORD

(ordinal), ADV (adverb), NPR (proper noun), and so on. If

the exact word from the input is not found in the diction-

ary, it must have a root form that is in the dictionary.

The root-finding procedure is as follows:

(1) if the word is a number or string, it

is automatically "in the dictionary" as a

generic; otherwise,

(2) look up the word in the dictionary;

if not found,

(3) reduce the word to a root form by

morphological analysis; look up this form;

if not found,

(4) try punctuation analysis to isolate a

root form; look up this form, if not

found,

(5) print the message:

ON-- A-

49

"I don't know the word:" <word>

"Please type its definition or correct spelling."

Once the prepass has been successfully completed,

the ATN begins at the state given by the value of

STARTSTATE, TOP/. At any given point, the network being

processed defines "expectations" of what will be ir the

input at that point. In the RUS System, the most impor-

tant expectation is the HEAD of the syntactic unit beirg

looked for (the main verb in a verb phrase, the main

preposition in a prepositional phrase, etc.). The way

that elements of the sentence are assigned to the struc-

ture of their syntactic unit is defined by the case frame

(as described in Chapter Three) of the HEAD word of the

unit. The basic approach of the parser, then, is: look

for the HEAD of the phrase (saving the non-HEAD words);

find the HEAD; build the phrase structure defined by the

HEAD; check the case frame of the HEAD to be sure that the

elements found so far are acceptable; look for any other

words that are needed to complete 1he phrase structure;

look for the next HEAD. Parsing a sentence ir the RUS Sys-

tem is this continual process of "suggestion" by the ATN

and "criticism" by the case frame interpreter.

As an illustration of how the calls to the seman-

tic interpreter are used to assign interpretations as well

as guide the parse, the following is taken from the

.=

50

actions of the PUSH NP/ arc in the state VP/OBJ.

(OR (AND (ASSIGNQ * HEAD OBJECT VERBCASES)
(SETR OBJECT *)
(ASSIGNQ OBJ? HEAD INDOBJ VERBCASES)
(SETR INDOBJ OBJ?))

(ABORT))

At this point in the parse, the verb phrase has been found

(with HEAD holding the main verb), the noun phrase that

was found and placed in OBJ? is believed to be the in-

direct object, and the noun phrase that was just succes-

sully PUSHed for (and is, therefore, the value of "1*"?,) is

believed to be the direct object. The two calls to

ASSIGNQ allow the interpretation of the object and in-

direct object with the verb in HEAD to be checked. If

both are successful, then the registers OBJECT and INDOBJ

are set. Because the four actions are within a LISP AND,

if all are successful, then the LISP OR has its first com-

ponent satisfied (equal to LISP non-NIL) and the OR con-

struct is completed. If any one is not successful, then

the value of the AND is false and the second component of

the OR is evaluated. This causes an ABORTion of the

current configuration - either the proposed object or the

proposed indirect object failed to be "understood" with

the main verb in HEAD.

The parsing process proceeds until a parse is

found or all paths have been exhausted. In the latter

case, rather than output "NO PARSE", an error message

I, * .

51

facility is suggested as an addition to the RUS System and

is described in the following chapter. If the parse was

successful, the "value" of the parse is th: value of the

variable "".

The output of the parse is printed from the value

of the variable "**". (How to charge what is displayed of

* is described in Chapter Six.) "Double star" is a list

data structure that contains the values assigned to the

registers during the parse. The word "SYNTAX" marks the

beginning of a new level in the parse. At the end of each

level, the value of the HEAD of that phrase is listed. To

illustrate, the sentence "I GAVE YOU THE BOAT" was parsed

(with only the "default" semantic rules as described in

Chapter Three).

(DECLARATIVE SYNTAX
((NOADJCOMPLEMENT)
(ASPECT (TENSEMARK TENSE ((TNS PAST))))
(HEAD . GIVE)
(STYPE . DECLARATIVE))

INDOBJ
(NP SYNTAX

(HEAD PRONOUN HEAD YOU LEX YOU)
DETERMINER

(DETERMINER CASEKEY NIL DETERMINER NIL)
HEAD

(PRONOUN HEAD YOU LEX YOU)
OBJECT

(NP SYNTAX
((HEAD NOUN HEAD BOAT LEX BOAT NUMBER SG)
(DET? DETERMINER ART

(ART HEAD THE SINGULAR T PLURAL T))
(ART ART HEAD THE SINGULAR T PLURAL T))
DETERMINER

(DETERMINER CASEKEY THE DETERMINER

(DETERMINER ART
(ART HEAD THE SINGULAR T PLURAL T)))

52

HEAD
(NOUN HEAD BOAT LEX BOAT NUMBER SG))

SUBJECT
(NP SYNTAX

(HEAD PRONOUN HEAD I LEX I)
DETERMINER

(DETERMINER CASEKEY NIL DETERMINER NIL)
HEAD

(PRONOUN HEAD I LEX I))HEAD GIVE)

DECLARAT.IVE

SYNTAX NDOBJ OBJECT SUBJECT H AD

P N.P GIVE

Although the above is a greatly abbreviated ver-

sion of the actual output, it illustrates the representa-

tions of the levels. The result is a DECLARATIVE with

HEAD equal to !'GIVE" (in the past terse). The SYNTAX list

of the phrase consists of some of its attributes; there is

no adjective complement, the head is "GIVE" in the past

tense, etc. There are three "sub-levels" in the phrase.

The INDOBJ (indirect object) level is a noun phrase whose

HEAD is "YOU", with no determiner. The OBJECT level

represents the object of the sentence, "THE BOAT". Fol-

lowing SYNTAX, the values of the registers HEAD, DET?, and

ART are listed. This noun phrase has a determiner of

"THE" (which can be with a singular or plural noun) and

"BOAT" as its HEAD. Finally, the third level is the

53

SUBJECT of the phrase. Its HEAD is "I"; it has no deter-

miner. The "double star", then, contains the output of

the parse in this level/sub-level representation, with

SYNTAX signalling the beginning of a level and HEAD mark-

ing the word that is the head of the level and that the

level is completed.

As the parse proceeds, each "sub-network" builds

the syntactic unit that was PUSHed for (noun phrase,

prepositional phrase, etc.), using the HEAD of the unit as

a guide for what "kind" of words are expected to complete

it; and, the "parts" of the unit may be checked semanti-

cally as well as the entire unit itself. Upon completion

of a successful parse, the variable ** contains the list

structures that are held by the registers as representing

the "meaning" of the total input phrase.

r

Chapter Five

Meanings of States

A good error message facility is an essential part

of any system that is purported to be "user-oriented".

When using a high-level programming language, for example,

we expect the compiler to output meaningful error mes-

sages. Any programmer who has encountered messages such

as "ERR 4A76:35" is well aware of the importance of the

content of these messages; and, certainly, a compiler that

does not output any messages (except "PROGRAM COMPILED" or

"PROGRAM NOT COMPILED") is totally unacceptable. Because

of the relatively limited grammar of a programming

language, a good error message mechanism for its compiler

can be written with a reasonable amount of effort; in

fact, the programmer expects such a facility.

In a natural language processing system, there is

a much broader range of inputs that need to be processed.

The grammar of a programming language is constructed so

that it is unambiguous, and makes use of a limited "voca-

bulary"; but a natural language grammar is taken from

actual human communication - with ambiguity and dependence

on context. The user of a natural language processing

54

.

55

system can exceed the "knowledge" of the system in a

number of ways, each of which should be handled in a way

that informs the user (as much as possible) why the system

was unable to process the input. The RUS System does not

currently have such an error message facility; the

remainder of this chapter describes the technique we sug-

gest for implementing one.

The simplest case in which the input can fail to

be parsed is when it contains a word unknown to the sys-

tem. In the RUS System, the lexical prepass (described in

the previous chapter) will try to find, in the dictionary,

the root form of each word of the input. If it is unable

to find the root form of any word, it will ask the user to

enter the correct spelling of the word or its definition.

More often, however, the user exceeds the system's

"knowledge" of natural language in a more serious way.

The user may input a phrase whose syntactic structure is

beyond the range of the current grammar. This could be

due to the existence of a class of acceptable syntactic

structures that the grammar does not handle; or, the input

was not (as much of our verbal communication is not) syn-

tactically correct. Whatever the case, the error facility

should explain, in as much detail as possible, why the

input failed to parse. The input sentence may be within

the "syntactic capability" of the ATN, but could contain a

4.. . ..

56

phrase that cannot be "understood" by the semantic

analysis; the lexicon CASESTRUC rules for the words in-

volved do not allow the semantic functions to succeed in

assigning a "meaning" to the phrase. We are usually able

to tell the user what component of the phrase was uninter-

pretable (subject, determiner, etc.), but the present sys-

tem has no "reasoning" component to examine the CASESTRUC

rules in order to form an explanation of what input could

have been understood or why the present phrase could not

be. In this case, the message we suggest at present is of

a more general nature. Through the error message mechan-

ism described below, we can determine which semantic check

failed, but we are unable to explain, in a detailed way,

why it failed.

As the input is processed, the ATN traverses vari-

ous arcs, moving from state to state. Each state may be

thought of as a representation of what has been under-

stood, what is now expected, and where processing is to

continue if what is expected is found. If the parsing

process "blocks" at a state, this information can be used

to explain to the user how his input did not meet the

parser's "expectations". The "meaning" of a state, then,

provides the necessary information for the constructing of

error messages to be output if the parse blocks at that

state.

57

The meaning-of-a-state/error-message representa-

tion that is used is that of Weischedel and Black [1979)

and Black [19791. The first problem is finding the state

that best represents the greatest degree to which the

parser "understood" the input. Since the parser will try

many alternatives before they are all found to be unsuc-

cessful, there are many paths, and therefore, many blocked

states which could be considered. First, all of the paths

which did not consume the greatest number of words are

eliminated. Then, of the remaining paths, we want to

select one path. The heuristic used is to determine the

"length" of each path. This is equal to the number of

arcs traversed not counting "trivial" PUSH or JUMP arcs

(i.e., those with T conditions). The path with the

greatest "length" is chosen as being the most likely ore.

If more than one path meets these criteria, then one is

chosen nondeterministically.

Although this error message facility is not yet

implemented for the RUS System, the "meanings" of many of

the states have been written. When the error mechanism

has been constructed, the parser will either successfully

parse the irput sentence, or it will invoke the error

function for the state as described above.

The "meaning" of a state is represented as a

series of condition/action pairs that are placed or the

58

property list of that state.

(<state-name>
(<condition 1> <action>*)
(<condition 2> <action>*)

(<condition n> <action>*))

The control structure is similar to that of the

LISP COND. That is, <condition 1> is EVALuated. If the

value is true (LISP non-NIL), then the <action>* (series

of actions) is EVALuated. If the value of <condition 1>

is NIL, then <condition 2> is EVALuated. This continues

until a <condition> is non-NIL and its <action>* performed

or the pairs are exhausted (all <condition>s are NIL and

no messages are printed).

A <condition> may be any LISP predicate. In error

messages for the states of the RUS ATN, the typical <con-

dition> might examine the contents of a register, invoke a

parser utility function to determine what may be following

the current word, or call a semantic assignment function

to reveal whether or nor such an assignment was successful

at this point.

An <action> may be one of the following:

(PCHAR (QUOTE " <text> "))
prints the characters in <text>

(PRINT-REG (GETR <reg>))
prints the contents of register <reg>

(PRINT-ANY-STRING <spec>)

prints the value of <spec>;
<spec> may be a LISP expression such as
(CADR (GETR HEAD)), or, more frequently,
the symbol *, whose value is the root
form of current input word or, if in a
PUSH arc, the expression popped, or LEX,
whose value is the current input word
itself.

(TERPRI)
prints a carriage return/line feed

(EXAMPLES? <word>)
prints example phrases using the word <word>;

the examples are on a separate disk
file. Each word has a list whose first
element is the word itself and whose
remaining elements are the examples.

(CONDACT <state>)
transfers control to the condition/action

pairs of the state <state>

(LOOKAHEAD)
causes the simulation of all transitions to

other states from this one via arcs
with unconditionally True conditions.
The new state's condition/action pairs

are then evaluated.

(<comment>)
a NULL action. Allows any action, typically

the first of a group of actions, to be
a <comment>.

Two additional features are a macro facility and a

message handling mechanism for embedded sentences. In

defining a macro, the form of the condition/action pairs

is the same, except the macro name replaces the state

name. Then, any condition/action pair in any state (in-

cluding those in another macro) may be simply a macro

name. The messages for embedded sentences allow the

printing of a message explaining that the higher level

1.,'

60

sentence was acceptable, so that it is clear that the

error lies in the embedded sentence. The messages for the

states that begin "looking" for an embedded sentence are

written in the same way except that the state name is pre-

ceded by *BAKSTK*. This allows the separation of messages

for blocking at a particular state and those for blocking

while processing an embedded sentence from that state.

The error message facility will output the input

sentence up to the point where the parse blocked. The

printing functions above (PRINT-REG and PRINT-ANY-STRING)

examine the form of their arguments and determine how to

print them in a neat format. Because of the structure of

the RUS ATN, and because there was not a RUS-oriented lex-

icon available, the EXAMPLES? and LOOKAHEAD functions were

not used in writing the sample messages.

To illustrate how the condition/action pairs

represent the "meaning" of a state, an example is ex-

plained below. The "meanings" of all of the states ir the

S, VP, and NP subgraphs appear in Appendix B.

61

1 (ASPECT/TO
2 ((AND (CAT V)
3 (NOT (CHECKF V UNTENSED)))
4 (; ASPECT VERB followed by 'TO' should then be
5 followed by an untensed verb.
6 This one is tensed.
7 (PCHAR (QUOTE " AN 'ASPECT' VERB, SUCH AS '
8 (PRINT-REG (GETR HEAD))
9 (PCHAR (QUOTE" ' FOLLOWED BY 'TO', EXPECTS AN

UNTENSED "))
10 (PCHAR (QUOTE " VERB TO BE NEXT, AS IN: "))
11 (TERPRI)
12 (PRINT-REG (GETR HEAD))
13 (PCHAR (QUOTE " TO LEAVE... "))
14 (TERPRI)
15 (PRINT-ANY-STRING LEX)
16 (PCHAR (QUOTE " IS NOT UNTENSED. "))
17 (TERPRI))
18 ((NOT (CAT V))
19 (; As above, except we don't even have a verb.)
20 (PCHAR (QUOTE " AN 'ASPECT' VERB FOLLOWED BY

'TO' "))
21 (PCHAR (QUOTE " EXPECTS AN UNTENSED VERB, AS

IN: "))
22 (TERPRI)
23 (PCHAR (QUOTE " IT BEGAN TO 'GROW'. "))
24 (TERPRI)
25 (PRINT-ANY-STRING LEX)
26 (PCHAR (QUOTE " IS NOT A VERB. "))
27 (TERPRI)))

At the beginning of the VP (Verb Phrase) group of

arcs, an "aspect" verb, such as 'START', 'BEGIN', 'TRY',

may be followed by the word 'TO'. If this is the case,

the transition is made to state ASPECT/TO. We now expect

an untensed verb. Blocking at this state can be due to

having a verb that is not untensed (or, at least, is not

marked in the lexicon as being untensed), or because the

current word is not even a verb.

The condition/action pairs for state ASPECT/TO are

shown above. Line 1 contains the name of the state.

) ..--.- ,

,* .

62

Lines 2 and 3 form the first condition. Following the

comment (lines 4, 5, and 6) are the printing commands of

the message. To illustrate the effect of the commands, if

the head verb were 'START' and the input word were 'SWAM'

('START TO SWAM'), the message that would be printed would

be:

AN 'ASPECT' VERB, SUCH AS 'START'
FOLLOWED BY 'TO', EXPECTS AN

UNTENSED VERB TO BE NEXT, AS IN:

START TO LEAVE...

SWAM IS NOT UNTENSED.

If the word after 'TO' is not a verb at all, then

the condition at line 18 would be true, and the second

message (lines 20 thru 27) would be printed. If the input

were 'START TO DESK', the message would be:

AN 'ASPECT' VERB FOLLOWED BY 'TO'
EXPECTS AN UNTENSED VERB, AS IN:

IT BEGAN TO 'GROW'.

DESK IS NOT A VERB.

The condition/action pairs may use the values of

the registers both to determine which message should be

printed and as part of the output of the message itself.

Because the information about a word is stored in the lex-

icon, the messages can guide the system builder in

developing the lexicon. If a message seems to be "wrong",

it may be because the information stored in the lexicon

about a word in the sentence is incorrect and/or

63

incomplete.

Because of the ability of the parser to "look

ahead" using the parser utility functions, many state

transitions are made knowing that the destination state

will be able to process the input and, therefore, the

parse cannot block there. Also, some state transitions

are made if the input word is a member of one of a number

of categories, and at the destination state, each of these

categories has an arc. Again, unless there are semantic

ABORTs, the parse cannot block at the destination state.

Therefore, there are a number of states in the RUS ATN for

which no error messages were written, since it is impossi-

ble for the parse to block at those states. The "meaning"

of those states are explained in paragraph form at the end

of Appendix B.

An example of such a situation is the Q/HOW state.

The Q/HOW state is reached from state Q/ if the "current"

word is 'HOW', and the predicate (NEXTCATS (ADJ SADV)) is

true. If this is true, then the category of the word

after the 'HOW' is adjective or adverb. In state Q/HOW,

there are two arcs, a CAT ADJ arc and a CAT SADV arc, both

with trivially true conditions T. Hence, the only way to

reach state Q/HOW is after the word 'HOW' has been con-

sumed and the "current" word is an adjective or an adverb.

At state Q/HOW, the two arcs have as their only conditions

gwt. Ai

64

that the word is an adjective or an adverb. Therefore,

the parse is unable to block at state Q/HOW.

The condition/action pairs may be thought of as

serving a dual purpose. They enable the system user to

quickly examine what is expected at a state, what has beer

found up to that point, and, therefore, determine how the

state "fits in" to the overall ATN - what its "meaning"

is. With the implementation of the error function, the

condition/action pairs also provide a powerful error fa-

cility that allows the user to experiment with the system

more freely. The semantic component car be built gradual-

ly, with the user adding rules while using the error mes-

sages for sentences that he/she wants to be accepted as a

guide.

Chapter Six

Users Manual

The semantic component of the RUS System is writ-

ten in INTERLISP [Teitelman, 19752; the ATN compiler [Bur-

ton, 1976] compiles the syntactic component into

INTERLISP. These two references should be consulted for

the details concerning the operation and use of the two

systems. The ATN compiler was not available to us; the

ATN was already in its compiled form. Therefore, the

operation and use of the grammar compiler will not be dis-

cussed.

The RUS System is invoked by entering "rusparser"

and pressing the return key. (The return is pressed after

every command; we will assume this in the remaining dis-

cussion.) The system prompt is an integer (which allows

reference to a previous command by using its number) fol-

lowed by a " " (underline). A phrase may now be parsed

(using the present dictionary, which must at least cont.air

"default" semantic rules for <NP> and <VP>, if nothing

else,) by entering "P(<phrase>)". For example, to parse

the title of this chapter, "P(USERS MANUAL)" would be

entered. Notice that the input form need not be the

65

66

"usual" LISP prefix form that consists of a list whose

first element is the function. Here, the function can be

named outside of the parentheses and the argument(s) to

the function listed inside them. Also, the system au-

tomatically performs a carriage return/line feed once the

parentheses "match up". (The symbol "]" can be used to

indicate the appropriate number of right parentheses need-

ed to end the current list.)

The syntactic component of the RUS System is

"fixed" (since we only have it in the compiled form);

changes are made by altering the semantic CASESTRUC case

frames (or any other part of the dictionary entries). A

typical instance that makes use of many of the system's

features is the entry of a new sentence to those that have

already beer parsed. A good first step is to try to parse

it using the "P" function described above. This will

invoke the lexical prepass (described in Chapter Four)

which will "complain" about any word in the input whose

root form could not be located in the dictionary. If a

word cannot be found, the prepass prompts for a correct

spelling of the word or its definition. The user can add

a word to the dictionary (without trying to parse a phrase

containing it) by calling the function MAKEKNOWN. Enter-

ing "(MAKEKNOWN <word>)", where <word> is the word in

question, will cause its current definition to be printed,

or a request for its definition if one does not already

67

exist. Two examples of basic definitions are shown below.

(N ((SENTENCE (NUMBER SG))))
definition of "sentence", a singular noun

(V ((PARSE (PRESPART))))
definition of "parsing", the present participle

of "parse"

Once the root forms of all of the words in the

input phrase are defined, the sentence car be parsed

(using the "P" function). The phrase structure that is

produced is based on the present dictionary. If this is

the dictionary currently used, it contains only a few

"default" semantic assignments (see Chapter Three). The

CASESTRUC of any word can be changed by calling the spe-

cial case editor "editc". Entering "editc (<word>)" ini-

tiates the editing of the CASESTRUC for the word <word>.

If the word has no present case frame, "CASESTRUC is NIL -

Use : command to provide initial CASESTRUC" is printed.

The user may then define a case frame for this word by

entering "(:(<case frame>))", where <case frame> is a case

frame of the form described in Chapter Three. If a case

frame already exists for the word, the editor is entered

and any of the INTERLISP editing commands may be used to

alter the form of the CASESTRUC. Once the desired case

frame is entered, the input phrase car again be parsed,

and the resulting changes in the phrase structure output

examined.

Often, it is very useful to be able to see how the

iI

68

parse is proceeding. The parse trace "switch" is charged

by entering "(PMS)" before parsing another phrase. If the

trace option was off, it is now on, and vice versa. The

parse trace causes the states, arcs, and new register

values to be printed as a parse progresses. Also, a

"NODE=..." line is output. This shows the words remaining

in the input string as each state is entered (if a list)

or the value popped from the processing of a "sub-network"

(if a list within a list). The user may then examine the

progression of the parse and pinpoint a problem, where the

ATN is unable to interpret something the user wanted it

to, for example.

In addition to this "parse trace" option, there is

also an INTERLISP trace function that allows any function

to be "traced". Entering "trace (<fn 1>...<fn n>)" will

cause the functions <fn 1>...<fn n> to be "traced". This

means that every time one of the functions is called, the

value of its arguments is output, it itself is evaluated,

and then the resulting value is printed. In this way the

user can know what functions are called, what their argu-

ments are, and what result the function produces. Often,

if a group of functions that the user is interested in are

invoked frequently during a parse (such as ASSIGN), the

user might "put a trace" on the functions, set the "parse

tree" switch as described above, and then parse a sample

phrase. Now the user can see the progression of the parse

tI

69

from state to state in the ATN as well as examine the

effect of the functions in question on the parse.

Another INTERLISP feature that is very useful for

debugging is the break function. Typing "break (<fn

1>.. .<fn n>)" will cause the functions listed to be "bro-

ken" whenever they are called. This means that as one is

called, but before it is evaluated, a message "(<fn x>

BROKEN)" is printed, a colon (the break prompt) is print-

ed, and execution stopped. The user may now enter any

valid INTERLISP command (just as if he/she were at the

"normal" level of processing) or one of a numer of break

commands. Some of the more useful commands are listed

below.

STATE prints the current state in the ATN

?= prints the values of the arguments of the

broken function

EVAL evaluates the broken function

VALUE prints the value of the break (which is the
value of the function if it was just
EVALed)

GO evaluates the broker function (if it was not
already EVALed), prints the value of the
break, and then ends the break (i.e.,
continues processing)

OK same as GO except the value is not printed.

The effects of both the "trace" and "break" debug-

ging commands are removed by the "unbreak" command.

Entering "unbreak (<ft 1>...<fn n>)" will remove the

70

listed functions from the trace and break lists; "unbreak

()" will remove all breaks and traces. Both the trace and

break functions are much more flexible than shown here.

The full list of options available when using them are

explained in the INTERLISP Manual.

Once an input phrase has been parsed, the result

is placed in the variable * Although a phrase struc-

ture is always printed as the result of the parse, the

structure upon which it is based can also be examined.

Typing "editv (**)" will allow the user to edit the full

output of the parse. Any editing command can then be

entered. Since the reason for editing "**" is usually to

examine it, not change it, the "pp" editing command to

"prettyprint" the value of "**" is usually the only com-

mand entered (other than "ok" to exit the editor, that

is). The variable DON'TPRINTSLOTS holds a list of slots

in "**" that are not to be printed in the normal parser

output. Changing this variable's value is the way to

alter the form of the parser output that is automatically

printed as the result of the parse; the value of "**" is

unaffected.

Occassionally, it is useful to be able to save all

or a portion of a terminal session on the system. In this

way, many people may be able to examine a sample session

more easily, and the actual printout from the session car

ffn f

71

be lost without grave consequences. A "transcript" of a

portion of a terminal session may be saved by entering

"dribble (<filename>)". From the point where that command V

was entered until "dribble ()" is entered, all lines are K
appended to the end of the file <filename>. If the file

did not exist, it is created, filled with the "dribbled"

lines, and saved.

The preceding discussion is meant to serve only as

an introduction to allow a user somewhat familiar with

LISP editors, but unfamiliar with INTERLISP and the RUS

System, to experiment with the system. Many more options

exist for the commands described above; and the INTERLISP

system has many additional commands that the user might

find useful in experimenting with the RUS System.

I [

r

Chapter Seven

Conclusion

The optimal methodology for a natural language

processing system is one in which the one of the two com-

ponents (syntax or semantics) that is "in control" at any

given time is the one that is best able to determine how

the current portion of the input should be handled. Se-

mantic grammars achieved this integration of the two types

of "knowledge", but at the cost of a decrease in flexibil-

ity and a near total lack of transportability to new ap-

plication domains. The RUS System has frequent interac-

tion between the two components (as soon as the "head" of

a syntactic unit is found), but has completely separate

representations for them; moving to a new application

domain requires altering only the semantic component.

The Augmented Transition Network that is used was

developed while being applied to three different domains

[Bobrow, 19782. The resulting parser handles a very large

subset of English; many of the constructs that were missed

in one application were found while examining another.

Also, the Well-Formed Substring Table facility, GROUP

arcs, "lookahead" functions, and altered depth-first

72

73

control structure have increased the determinism of the

"standard" ATN paradigm. These attempts to move away from

"hypothesis-driven" toward "data-driver" processing, along

with the ATN being compiled have greatly improved the

efficiency of the ATN. Actual implementations of RUS-

based systems have parsed from fifty to sixty percent of

their inputs with no back-up, and from fifteen to twenty-

five percent with "semantic back-up" (due to interpreting

a construct correctly, but at the wrong level - as people

would do in a left-to-right examination of the input)

[Mark and Barton, 1980; Bobrow, 1978). Since the syntac-

tic component of the system is "fixed", it is crucial that

it is able to process a large subset of English efficient-

ly. (Fairly complex sentences took three-fourths of a

second of CPU time to parse.)

A "usable" natural language processing system must

have an error message facility that is invoked when a

parse fails. The "state meanings" concept has been imple-

mented in an earlier system [Black, 1979; Weischedel and

Black, 1979). It was found to be applicable to a general

class of grammars and to require little modification of

the grammar itself. Because of the difficulties that may

arise in the writing of the semantic rules for a new ap-

plication domain, the error message facility would be an

invaluable aid in determining the cause of parsing

failures. Indeed, the constructing of a set of semantic

Vi

74

rules by a non-experienced designer could be a very diffi-

cult process without such a facility. Although the func-

tions to implement this facility for the RUS System have

not yet been written, the moderate effort we expended in

writing the "meanings of the states", along with the

results of the previous work, indicate that writing the

necessary implementation functions can be completed.

Although a RUS-oriented semantic component (the

dictionary) was not available, those who have developed

(or are planning to develop) a lexicon for a new domain

have estimated the effort involved to be from one to four

person-months (Mark and Barton, 1980; Bobrow, 1978). This

represents a significant improvement in the degree of

transportability of natural language processing systems.

The closer the syntactic and semantic components

of a system work together, the more efficiently the system

will process English input. Although the RUS System util-

izes the method of frequent interactions based on the

finding of syntactic "units", the best interaction metho-

dology intuitively seems to be to allow the two components

to process an input phrase totally "in parallel" (with the

component with the most "knowledge" at any given point in

control). However, the communication/control problems in

multiprocessing are difficult ones; it is quite possible

that the overhead needed to allow such processing would

~L

75

strain the efficiency of the system more than creating the

"optimal parsing environment" would improve it.

The RUS System meets many of the goals of a good

natural language processing system. The separation of the

syntactic and semantic components allows the capturing of

syntactic regularities and the modification of one type of

"knowledge" separately from the other. The frequent se-

mantic checks permit substantial guidance of the parse by

domain-dependent "knowledge". The addition of mary

features to the standard ATN formalism has greatly in-

creased its power and efficiency. The case structure

representation of domain "knowledge" is a very flexible

representation; the user may "define" the ways in which a

word may be used as broadly or as narrowly as desired. In

comparison to previous natural language processing sys-

tems, the RUS System is able to be applied to a wider

range of applicat.on domains, has a greater flexibility in

how domain-dependent "knowledge" can be represented, uses

the domain "knowledge" to a significant degree in guiding

the parse, and is efficient enough to respond to input

phrases within a one second time period.

.

Bibliography F

Black, John E. "Generating Error Messages for Naive Users
of Software Having Natural Language Input." Unpub-
lished Masters thesis, University of Delaware, 1979.

Bobrow, Robert J. "The RUS System." Research in Natural
Language Understanding. BBN Report No. 378. Cam-
bridge, Massachusetts: Bolt Beranek and Newman Inc.,
1978.

Bruce, Bertram C. "Case Systems for Natural Language."
Artificial Intelligence, December, 1975, 327-360.

Burton, Richard R. Semantic Grammar: An Engineering
Technique for Constructing Natural Language
Understanding Systems. BBN Report No. 3453. Cam-
bridge, Massachusetts: Bolt Beranek and Newman Inc.,
1976.

Mark, William S. and Barton, G. Edward, Jr. The
RUSGRAMMAR Parsing System. Research Publication
GMR-3243. Warren, Michigan: General Motors Research
Laboratories, 1980.

Teitelman, Warren INTERLISP Reference Manual. Palo Alto,
California: Xerox Palo Alto ReseaTr-t'-hCenter, 1975.

Weischedel, Ralph M. and Black, John E. Responding to
Potentially Unparsable Sentences. Technical Report
No. 79/3, Department of Computer and Information Sci-
ences, University of Delaware, Newark, Delaware,
1979. (To appear in American Journal of
Computational Linguistics, 1980T.

Winograd, Terry. "Procedures as a Representation for Data
in a Computer Program for Understanding Natural
Language." Doctoral dissertation, Massachusetts
Institute of Technology, 1971.

Woods, William A. "An Experimental Parsing System for
Transition Network Grammars." Natural Language
Processing. Edited by R. Rustin. New York

rithmics Press, 1973.

76

77

Woods, William A. "Semantics and Quantification in Natur-

al Language Question Answering." Advances in

Computers. Vol. 17. Edited by M. C. Yovits. New

York: Acad emic Press, 1978.

I'

II

Appendix A

RUS ATN Graph

The diagrams on the following pages represent the

Augmented Transition Network of the RUS System. The full

list of curditions (and actions) are impossible to include

in such a diagram. The arc labels do include the "type"

of the arc (WRD, CAT, JUMP, etc.) and its arguments. For

example, a CAT arc label includes the category being

looked for. None of the additional conditions or any of

the actions are listed.

If a state is represented by dotted lines, that

indicates that the state appears on another page of the

graph as well. The number in the square next to the dot-

ted line state indicates the page number on which the

state appears in "non-dotted" form.

78

79

vii

........

r0 '

80

174

-l i u

81

II

z 4

h-l

82

@@ 0

.I'/-' , .. ,

V 4 1

IIil

j4

83

IR

P V

j
0. t ' .:

',. -- " - _._...

.'- ,--,_
. , . . ,

84

7b

17 JiE

INI
.......

[8

4

.,o°

".I I

N
-1.. . *...

Appendix B

State Meanings: K
S, VP, and NP Groups

(S/
((AND (CAT V)

(CHECKF V UNTENSED)
(NOT (0e IMPERATIVE)))

C; An imperative is expected. The verb must be untensed
and have a CASESTRUC rule for imperative. In this
case, it is untersed but has no rule for imperative.)

(PCHAR (QUOTE " THE VERB '
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " ' , ALTHOUGH UNTENSED, CANNOT BE UNDERSTOOD "))
(PCHAR (QUOTE " AS AN IMPERATIVE. "))
(TERPRI))

((AND (CAT V)
(NOT (CHECKF V UNTENSED))
(NOT (*e : IMPERATIVE)))

C; As in the case above, except that the verb is not untensed.)
(PCHAR (QUOTE " THE VERB 'f))
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " CANNOT START A SENTENCE. A VERB HERE i))

(PCHAR (QUOTE " INDICATES AN IMPERATIVE AND MUST BE UNTENSED. i))

(TERPRI))
((CAT V)

C; As above, except the verb has an imperative rule, but is not
untensed.)

(PCHAR (QUOTE " TO BE AN IMPERATIVE, THE VERB MUST BE UNTENSED. "))
(TERPRI))

(T
(; Blocked at a word that is not a verb. List of what is

expected at this state is printed cut.)
(PCHAP (QUOTE " THE BEGINNING OF A SENTENCE (OR AN EMBEDDED ",
(PCHAR (QUOTE " SENTENCE) MUST BE ONE OF THE FOLLOWING: "))
(PCHAR (QUOTE " I. AN ADVERB
(PCHAR (QUOTE " 2. A PREPOSITION "))
(PCHAR (QUOTE " 3. AN ADJUNCTIVE PHRASE
(PCHAR (QUOTE " 4. AN UNTENSFD VERB
(PCHAR (QUOTE " 5. A QUEST:3N VERB, ADVERB, OA "))
(PCHAR (QUOTE " DETERMINER
(PCHAR (QUOTE " 6. THE WORD 'THERE'))
(PCHAR (QUOTE " 7. A NOUN PHRASE
(TERPRI)))

86

87

((WRD HOW)
(; In a question, the 'HOW' must be followed by ar adjective,

adverb, or verb.)
(PCHAR (QUOTE " THE WORD 'HOW' MUST BE FOLLOWED BY AN "))
(PCHAR (QUOTE " ADJECTIVE, AN ADVERB, OR A VERB, AS IN: "))
(PCHAR (QUOTE " HOW BIG IS...
(PCHAR (QUOTE " HOW QUICKLY CAN... "))
(PCHAR (QUOTE " HOW DID THEY... "))
(TERPRI)))

(S/NP/i
((AND (CAT V)

(EQ (GETR COMPLTYPE)
(QUOTE FOR)))

C; A 'FOR' Complement is expected. The verb must be a present
participle.)

(PCHAR (QUOTE " IN A 'FOR COMPLEMENT', THE VERB MUST BE A "))
(PCHAR (QUOTE " PRESENT PARTICIPLE, AS IN: "))
(PCHAR (MUOTE " ...FOR 'PRINTING' MESSAGES... "))
(TERPRI))
((AND (CAT V)

(EQ (GETR COMPLTYPE)
(QUOTE TO)))

C; A 'TO' Complement is expected. The verb must be untensed.)
(PCHAR (QUOTE " IN A 'TO COMPLEMENT', THE VERB MUST BE AN "))
(PCHAR (QUOTE " INFINITIVE, AS IN: "))
(PCHAR (QUOTE

"
...TO 'BE' AN ERROR... "))

(TERPRI))
((CAT V)

C; If we do not have a complement as in the cases above, the
verb must not be a present participle.)

(PCHAR (QUOTE " THE VERB HERE CAN BE ANY FORM OTHER "))
(PCHAR (QUOTE " THAN A PRESENT PARTICIPLE. "))
(TERPRI))

((EQ (CAR (GETR ?))
(QUOTE QADV))

(; We do not have a verb. (The previous three conditions
handled all verb possibilities.) And we Just had a
question-adverb, such as 'WHEN'.)

(PCHAR (QUOTE " IN A QUESTION, THE WORD
(PRINT-ANY-STRING (CDR (GETR ?)))
(PCHAR (QUOTE " ' SHOULD BE FOLLOWED BY A VERB. "))
(TERPRI))

(T
(; Expecting a verb.)
(PCHAR (QUOTE " A VERB FORM IS EXPECTED HERE. "))
(TERPRI)))

88

(1 A 'NOT' Is valid here only if an adverb has beer encountered.
A 'NOT' before the adverb has already been taker care of
in state S/FVERB.)

(PCHAR (QUOTE " THE 'NOT' HERE DOES NOT MAKE SENSE. A "))
(PCHAR (QUOTE " 'NOT' CAN BE HERE ONLY IF AN ADVERB "))
(PCHAR (QUOTE " HAS BEEN FOUND. "))
(TERPRI))

((AND (CAT V)
(CHECKF V PRESPART)
(NOT (ASPECTVERB HEAD)))

(; A present participle here is alright as long as the head verb
is an aspect verb. (e.g., 'IS GOING', 'BEGIN RUNNING'))

(PCHAR (QUOTE " THE PRESENT PARTICIPLE '
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " ' CANNOT BE UNDERSTOOD BECAUSE IT MUST BE "f))
(PCHAR (QUOTE " PART OF AN ASPECT VERB PHRASE, SUCH AS: "))
(PCHAR (QUOTE " HE BEGAN 'RUNNING'...
(PCHAR (QUOTE " I WILL START 'SINGING'... "))
(TERPRI)
(PCHAR (QUOTE " THE VERB '
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' IS NOT A ASPECT VERB. "))
(TERPRI))

((AND (CAT V)
(CHECKF V UNTENSED)
(NULL (CDR (GETR ASPECT)))
(NULL (GETR MODAL)))

(; An untensed verb here is alright only if we had a modal.
e.g., I MIGHT 'GO'...)

(PCHAR (QUOTE " FOR AN UNTENSED VERB SUCH AS ' "))
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " ' TO BE HERE, WE MUST HAVE HAD A "))
(PCHAR (QUOTE " MODAL VERB, SUCH AS: "))
(PCHAR (QUOTE " I 'MIGHT' GO... "))
(PCHAR (QUOTE " HE 'WILL' EXPLAIN... "))
(TERPRI))

((AND (CAT V)
(OR (EQREG HEAD BE)

(EQREG HEAD GET)
(EQREG HEAD BECOME))

(CHECKF V PASTPART)
(NOT (VPASSIVE *)))

(; If we had a form of 'BE', 'GET', or 'BECOME', the past
participle here should be part of a passive Construction.
e.g., IT WAS 'SENT'...)

(PCHAR (QUOTE " BECAUSE OF THE HEAD VERB if))
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' AND THIS PAST PARTICIPLE if))

(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " ', A PASSIVE CONSTRUCTION IS EXPECTED. "))
(PCHAR (QUOTE " HOWEVER, THE PAST PARTICIPLE VERB HERE "))
(PCHAR (QUOTE " IS NOT ABLE TO BE PART OF A PASSIVE PHRASE. "))
(TERPRI))

((AND (CAT V)
(OR (EQREG HEAD BE)

(EQREG HEAD GET)

i 1 1 *-.* - '1

AD-A091 043 DELAWARE UNIV NEWARK DEPT OF COMPUTER AND INFORMATI -ETC FIG 9/2
A CASE STUDY IN NATURAL LANGUAGE PROCESSING: THE RUS SYSTEM (U)
MAY 80 A W MANSKY F49620-79-C-0131

UNCLASSIFIED AFOSR-TR-80-1035 NLfl/II/I//I//IIll,
IEEIIEIIIIIIEE
IlED

11111 1.05 11 1= =

MICROCOPY RESOLUTION TEST CHART
NATIONAL B3UR[AU Of SIAt4OARDS-1963-A

89

(EQREG HEAD BECOME))
(VPASSIVE *)
(NOT (CHECKF V PASTPART)))

(; As in the above case, except that the verb is marked as
being able to be in a passive Construction, but it is
not marked as being a past participle.)

(PCHAR (QUOTE " A PASSIVE CONSTRUCTION IS EXPECTED. THE "))
(PCHAR (QUOTE " HEAD VERB BEING 9))
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE 0 ' AND THE VERB 0))
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " 'BEING ABLE TO BE PASSIVE INDICATES THAT THE "))
(PCHAR (QUOTE " LATTER SHOULD BE A PAST PARTICIPLE, BUT "))
(PCHAR (QUOTE " IT IS UNABLE TO BE INTERPRETED AS ONE. 0))
(TERPRI))

((AND (CAT V)
(EQREG HEAD HAVE)
(NULL (CDR (GETR ASPECT)))
(NULL (CHECKF V PASTPART)))

(; If there has bean a form of the verb 'HAVE', a past
participle is expected.)

(PCHAR (QUOTE "SINCE THERE WAS A FORM OF THE VERB "))
(PCHAR (QUOTE 0 'HAVE', A PAST PARTICIPLE IS EXPECTED HERE, "))
(PCHAR (QUOTE " AS IN:
(PCHAR (QUOTE " HE HAS 'GONE'...
(PCHAR (QUOTE " I HAVE 'SEEN'... "))
(TERPRI)
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " IS NOT A PAST PARTICIPLE i))

(TERPRI))
((AND (OR (CAT ADJ)

(WRD (AS MORE LESS)))
(NOT (COPULA HEAD)))

(; An adjective or one of 'AS', 'MORE', or 'LESS' indicates the
beginning of an adjective group if the head verb was a
copula. e.g., IT BECILE 'MORE' THAN... THIS IS 'AS'
LARGE A PROBLEM...)

(PCHAR (QUOTE " THE WORD
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " ' INDICATES THE BEGINNING OF AN ADJECTIVE "))
(PCHAR (QUOTE " GROUP, BUT THE HEAD VERB MUST BE A COPULA- i))

(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " IS NOT ONE. EXPECTING PHRASES OF THE FORM: "))
(TERPRI)
(PCHAR (QUOTE " IT IS "))
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " ... i))
(TERPRI)
(PCHAR (QUOTE " WHERE THE WORD '
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " ' IS THE BEGINNING OF AN ADJECTIVE PHRASE. "))
(TERPRI))

(T
(; Blocked at this state for other reasons. Because there are

so many arcs (12) and conditions (24) at this state,
only the eight (most likely?) conditions above are

90

checked. If none of those are applicable, a list of
what was expected is printed.)

(PCHAR (QUOTE " AT THIS POINT IN THE SENTENCE, ONE OF "))
(PCHAR (QUOTE " THE FOLLOWING WAS EXPECTED. "))
(TERPRI)
(PCHAR (QUOTE " 1. AN ADJECTIVE, 'AS', 'MORE', OR 'LESS'
(PCHAR (QUOTE " FOLLOWING A COPULA VERB,
(PCHAR (QUOTE " (IT IS 'LARGER' THAN...) a))
(PCHAR (QUOTE " (THEY SEEMED 'MORE' HAPPY...) U))
(PCHAR (QUOTE " 2. 'TO' FOLLOWING AN ASPECTYPE VERB,
(PCHAR (QUOTE " (WE STARTED 'TO' LEAVE...) U))

(PCHAR (QUOTE " 3. AN UNTENSED PAST PARTICIPLE,
(PCHAR (MUOTE " 'COME', 'RUN', ETC.)
(PCHAR (QUOTE " 4. AN UNTENSED VERB FOLLOWING A MODAL, U))

(PCHAR (QUOTE " (THEY SHOULD '00'...) U))

(PCHAR (QUOTE " (I WILL 'SHOW'...)))
(PCHAR (QUOTE " S. A PRESENT PARTICIPLE FOLLOWING AN U))
(PCHAR (QUOTE " ASPECTYPE VERB,
(PCHAR (QUOTE U (THEY BEGAN 'RUNNING'...) U))

(PCHAR (QUOTE " 6. A PAST PARTICIPLE IN A PASSIVE U))
(PCHAR (QUOTE" CONSTRUCTION AFTER 'BE', 'GET',
(PCHAR (QUOTE " OR 'BECOME', U))
(PCHAR (QUOTE " (IT WAS 'GIVEN'...)
(PCHAR (QUOTE " (THEY ARE 'AMUSED' BY...)
(PCHAR (QUOTE " 7. A PAST PARTICIPLE FOLLOWING 'HAVE' U))

(PCHAR (QUOTE " (HE HAS 'GIVEN' EVERYTHING...) U))
(PCHAR (QUOTE " (I HAVE 'CANCELLED' THE...)))
(PCHAR (QUOTE " B. AN INTEGER OR COMPARATIVE FOLLOWING 'BE', "))
(PCHAR (QUOTE " (THERE ARE 'FIVE'...) U))

(PCHAR (QUOTE " 9. AN ADVERB.))
(PCHAR (QUOTE " ('AE RAN 'QUICKLY'...) U))

(TERPRI)
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE I IS NOT ABLE TO BE INTERPRETED AS ANY OF THESE. 0))
(TERPRI)))

91

(ASPECT/TO
((AND (CAT V)

(NOT (CH9CEF V UNTENSED))
(ASPECT VERB followed by 'TO' should then be followed by an

untensed verb. This one is tensed.)
(PCHAR (QUOTE " AN 'ASPECT' VERB, SUCH AS'
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ', FOLLOWED BY 'TO', EXPECTS AN UNTENSED VERB)
(PCHAR (QUOTE " TO BE NEXT, AS IN:
(TERPRI)
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " TO LEAVE... "))
(TERPRI)
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE 0 1S NOT UNTENSED.")
(TERPRI))

((NOT (CAT W)
C; As above, except we don't even have a verb.)
(PCHAR (QUOTE " AN 'ASPECT' VERB FOLLOWED BY 'TO' EXPECTS AN)
(PCHAR (QUOTE " UNTENSED VERB NEXT, AS IN: 9
(TER PRI)
(PCHAR (QUOTE "IT BEGAN TO 'GROW'.
(TEl PRI)
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " 1S NOT A VERB,.)
(TERPRI))

(VP/ASSIGNHEAD
((CAT PREP)
C; A preposition is permitted here if the verb car take one as

part of the verb ('START UP' THE CAR.) or as an object
of the verb. (WE LOOKED 'UP'.))

(PCHAR (QUOTE " A PREPOSITION SUCH AS # 0f))
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE 0 ' CAN BE UNDERSTOOD HERE ONLY IF THE VERB i)

(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' CAN TAKE A PREPOSITION AS A VERB PART, AS i)

(PCHAR (QUOTE 0 IN 'START UP', OR AS AN OBJECT, AS IN)
(PCHAR (QUOTE " 'LOOK DOWN'. NEITHER ONE IS THE CASE. i)

(TERPRI))
((NOT (OR (AND (EQREG STYPE POSS-ING)

(ASSIGNO HEAD
(OR (GetPATHR HEAD HEAD: PARTICIPLE/OF)

(GetPATHR HEAD HEAD))
HEAD VERBCASES))

(AS31GNQ HEAD HEAD HEAD VERSCASES)
(ForceParaeFLG))

(Hoping to go get objects after finishing verb, but verb does
not check out semantically.)

(PCHAR (QUOTE " THE VERB'
(PRINT-REG (GETI HEAD))
(PCHAR (QUOTE " ' CANNOT BE UNDERSTOOD AS THE MAIN VERB")
(PCHAR (QUOTE " IN THE PHRASE.")
(TERPRI))

((NOT (OR (EQIEG STYPE IMPERATIVE)

66

92

(EQREG STYPE POSS-ING)
(AND (GETR SUBJCOMP)

(ASSIGNQ SUBJCONP HEAD SUBJCOMP VERBCASES))
(AND (ASSIGNQ FIRSTNP HEAD SUBJECT VERBCASES)

(SETR SUBJECT FIRSTNP))
(ForcParseFLG)))

C; The noun phrase in register FIRSTNP does not check semantically
with the verb ir HEAD. Also, if there is a subject
complement in SUBJCOMP, it also does not cheek out
semantloally.

(COND ((GETR SUBJCOMP)
(PCHAR (QUOTE 0 THE PHRASE '
(PRINT-REG (GETR SUBJCOP))
(PCHAR (QUOTE 0 ' IS UNABLE TO BE UNDERSTOOD AS A "))
(PCHAR (QUOTE " SUBJECT COMPLEMENT WHEN USED WITH THE VERB '
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE ")
(TERPRI)))

(PCHAR (QUOTE " THE NOUN PHRASE '
(PRINT-REG (GETR FIRSTNP))
(PCHAR (QUOTE " ' CANNOT BE INTERPRETED AS THE SUBJECT OF A "))
(PCHAR (QUOTE " SENTENCE WHOSE VERB IS
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' .))
(TERPRI))
(T
(; The above conditions handle ABORTs of paths into this State;

if the SUSPENDS at this state are taken, the verb in HEAD
does not make sense seuantically with FIRSTNP or SUBJCOMP,
but the ForceParse was True, so a sy.tactic ssignment was
forced.)

(PCHAR (QUOTE " WITH THE VERB '
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ', THE FOLLOWING CANNOT BE UNDERSTOOD: '))
(TERPRI)
(COND ((GETR SUBJCOMP)

(PRINT-REG (GETR SUBJCONP))
(PCHAR (QUOTE " AS A SUBJECT COMPLEMENT. ")))

(T (PRINT-REG (GETR FIRSTNP))
(PCHAR (QUOTE " AS THE SUBJECT. "))))

(TERPRI)))

93

,VP/UNTENSEDandPASTPART
((AND (OR (EQREG HEAD BE)

(EQREG HEAD GET)
(EQREG HEAD BECOME))

(NOT (VPASSIVE *)))
(; If we have an untersed past participle with a HEAD of 'BE',

'GET', or 'BECOME', then we have a pssve Construction -
blocked here if participle not marked as being able to be
passive.)

(PCHAR (QUOTE " THE VERB ' "))
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' FOLLOWED BY THE PARTICIPLE '
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " ' INDICATES A PASSIVE CONSTRUCTION, BUT THE "))
(PCHAR (QUOTE " PARTICIPLE CANNOT BE PASSIVE. "))
(TERPRI))

(T
(; If not the above case, the passive failed because HEAD was

not one of the above three or the modal condition (the
alternate arc) was not met. What was expected is
printed.)

(PCHAR (QUOTE " AN UNTENSED PAST PARTICIPLE, SUCH AS '
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " ', CAN BE UNDERSTOOD HERE ONLY IF EITHER:
(TERPRI)
(PCHAR (QUOTE " 1. THERE 1S A MODAL VERB AND NO
(PCHAR (QUOTE " ASPECT VERB.
(PCHAR (QUOTE " (THEY 'MIGHT COME.') "))
(PCHAR (QUOTE " OR 2. THE MAIN VERB IS 'BE', 'GET', OR
(PCHAR (QUOTE " 'BECOME' AND THE PHRASE IS PASSIVE."))
(PCHAR (QUOTE " (IT 'WAS SET'.) 0))
(TERPRI)))

'VP/GETOBJ
((AND (WRD (FOR TO))

(NOT (FORTOCOMP HEAD)))
(; We expect a FOR/TO Complement, but the verb in HEAD cannot

take such a complement.)
(PCHAR (QUOTE " THE WORD ' 8))
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " ' HERE INDICATES THE BEGINNING OF A COMPLEMENT. "))
(PCHAR (QUOTE " SUCH AS 'FOR YOU TO FINISH.'; HOWEVER,THE VERB '
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " CANNOT HAVE SUCH A COMPLEMENT. "))
(TERPRI))

((AND (WRD THAT)
(NOT (THATCOMP HEAD)))

(; If we have the word 'THAT', then the verb ir HEAD should be a
THATCOMP. The word 'THAT' does not have to be here for a
THATCOMP, though. If the verb is not marked as a
THATCOMP and we have one without the 'THAT', we can't
tell that here. In that case, the last condition will
print what was expected at this state.)

(PCHAR (QUOTE " THE 'THAT' INDICATES THE BEGINNING OF A "))
(PCHAR (QUOTE " COMPLEMENT, BUT THE VERB '))

, ! -

94

(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' CANNOT HAVE A 'THAT COMPLEMENT'. "))
(TERPRI))
((NOT (OR (VTRANS HEAD)

(DELFORTOCOMP HEAD)))
(; Expecting the object of a transitive verb, but the verb is

neither marked as transitive nor able to take a
complement such as: 'I WANTED YOU TO FINISH'.)

(PCHAR (QUOTE " UNABLE TO LOOK FOR AN OBJECT OF I))
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' BECAUSE IT IS NOT TRANSITIVE AND CANNOT "))
(PCHAR (QUOTE " TAKE A COMPLEMENT WITH A DELETED 'FOR', SUCH AS: "))
(TENPRI)
(PCHAR (QUOTE-" I WANT YOU TO FINISH. "))
(TERPRI)
(PCHAR (QUOTE " ON? OR BOTH OF THESE CONDITIONS MUST BE TRUE. "))
(TERPRI))
(T
(; Blocked here for reasons other than those above. Incomplete

sentence, no noun phrase for the object, etc. What was
expected at this point is printed.)

(PCHAR (QUOTE " TRYING TO FIND AN OBJECT OF '
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' . WE NEED TO HAVE ONE OF THE FOLLOWING: "))
(TERPRI)
(PCHAR (QUOTE " 1. A FOR/TO COMPLEMENT
(PCHAR (QUOTE " (IT IS POSSIBLE 'FOR ME TO...') U))
(PCHAR (QUOTE " 2. A THAT COMPLEMENT
(PCHAR (QUOTE 0 CI KNOW 'THAT YOU WILL...')))
(PCHAR (QUOTE " (I KNOW 'YOU WILL...')))
(PCHAR (QUOTE " 3. A NOUN PHRASE - BEGINNING HERE, OR W))
(PCHAR (QUOTE " HELD FROM EARLIER IN THE SENTENCE "))
(PCHAR (QUOTE " (I PARSED 'THE SENTENCE'.) f))
(TERPRI)))

(VP/OBJ
((AND (WRD (THAT FOR TO))

(EQ (GetPATHR SUBJECT HEAD HEAD)
(QUOTE IT))

(NOT (SUBJCOMP HEAD)))
(; Looking for the complement of an 'IT' phrase. The HEAD verb

must be able to take a SUBJCOMP. e.g., It is crazy
'for you to parse this'.)

(PCHAR (QUOTE " THE WORD U))

(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " ' INDICATES THE BEGINNING OF A COMPLEMENT OF U))

(PCHAR (QUOTE " THE 'IT' PHRASE, BUT THE VERB
(PRINT-REG (GETR HEAD))
(PCKAR (QUOTE " CANNOT HAVE SUCH A COMPLEMENT. U))
(TERPRI))

((AND (NOT (TOCOMP HEAD))
(OR (WRD (NOT TO))

(AND (FMEMB (NEXTWRD)
(QUOTE (NOT TO)))

(CATS (QADV QUESPRO)))))

i7Ii, I

95

(; Having a 'TO' or 'NOT' here indicates the beginning of a
modifying phrase that sets as the object. I told John
'to read the book' or We will ask her 'rot to reveal
the secret'. However, the HEAD verb will not allow
such a complement.)

(PCHAR (QUOTE " THE ' "))
(COND ((WRD (NOT TO))

(PRINT-ANY-STRING LEX))
(T (PRINT-ANY-STRING LEX)

(PRINT-ANY-STRING NEXTWRD)))
(PCHAR (QUOTE " ' SIGNALS THE BEGINNING OF A COMPLEMENT, "))
(PCHAR (QUOTE " AS IN: "))

I(TERPRI)
(PCHAR (QUOTE 4I ASKED YOU 'TO READ THE BOOK'.))
(PCHAR (QUOTE " SHE TOLD US 'HOW TO DO THAT'. 0))
(TERPRI)
(PCHAR (QUOTE " HOWEVER, THE VERB '
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' CANNOT HAVE SUCH A COMPLEMENT. "))
(TERPRI))

((AND (TOCOMP HEAD)
(OR (WRD (NOT TO))

(AND (FPEMB (NEXTWRD)
(QUOTE (NOT TO)))

(CATS (QADV QUESPRO)))))
(; As above, except the verb was marked as a TOCOMP. The push

was successful and we returned back. However, one of
two aborts ended the processing of this path.)

(COND ((NOT (ASSIGNQ 6 HEAD TOCOMP VERBCASES))
(PCHAR (QUOTE " THE 'TO-COMPLEMENT' PHRASE '
(PRINT-ANY-STRING *)
(PCHAR (QUOTE " ' CANNOT BE UNDERSTOOD WHEN USED "))
(PCHAR (QUOTE " WITH THE VERB '
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ")))
(T
(PCHAR (QUOTE " THE NOUN PHRASE U))

(PRINT-REG (GETR OBJ?))
(PCHAR (QUOTE " ' CANNOT BE UNDERSTOOD AS AN INDIRECT U))

(PCHAR (QUOTE 0 OBJECT OF THE VERB ' "))
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " M))))

(TERPRI))
((AND (CAT PREP)

(NOT (VPARTICLE HEAD M)))
(; A preposition here must be with a verb that is marked as taking

particles as an "auxiliary" part of the verb, as in
'START UP', 'CLEAN UP', etc.)

(PCHAR (QUOTE " A PREPOSITION, SUCH AS U))

(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE U 1, AT THIS POINT, SHOULD BE AN AUXILIARY "))
(PCHAR (QUOTE " PART OF THE VERB, AS IN: U))

(TERPRI)
(PCHAR (QUOTE " ...'CLEAN UP' YOUR ROOM...
(PCHAR (QUOTE U ...'START UP' THE CAR... U))

(TERPRI)

. -

96

(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE , HOWEVER, CANNOT HAVE SUCH AN AUXILIARY "))
(PCHAR (QUOTE " PREPOSITION. "))
(TERPRI))
((AND (PossibleNP? T)

(NOT (TAIEINDOBJ HEAD)))
(; The noun phrase beginning here is the object and what is in

register OBJ? is the indirect object if the verb can take
an indirect object. This verb Is not marked as taking an
indirect object.)

(PCHAR (QUOTE " THE NOUN PHRASE BEGINNING HERE IS EXPECTED "))
(PCHAR (QUOTE " TO BE THE OBJECT, WHILE '
(PRINT-REG (GETR OBJ?))
(PCHAR (QUOTE 0 , IS EXPECTED TO BE THE INDIRECT OBJECT. "))
(PCHAR (QUOTE 0 HOWEVER, THE VERB)
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " CANNOT HAVE AN INDIRECT OBJECT. "))
(TERPRI))
((AND (TAKEIWDOBJ HEAD)

(PossibleNP? T))
(; As above, except that the verb was marked as taking an

indirect object, the noun phrase was sucOessfully
pushed for, but one of two aborts ended the processing
of this path.)

(COND ((NOT (ASSIGNQ a F AD OBJECT VERBCASES))
(PCHAR (QUOTE " THE NOUN PHRASE '
(PRINT-ANY-STRING 4)
(PCHAR (QUOTE " ' CANNOT BE UNDERSTOOD AS THE OBJECT "))
(PCHAR (QUOTE " OF THE VERB '
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " I .))

(T
(PCHAR (QUOTE " THE NOUN PHRASE '
(PRINT-REG (GETR OBJ?))
(PCHAR (QUOTE " ' CANNOT BE UNDERSTOOD AS THE INDIRECT "))
(PCHAR (QUOTE 0 OBJECT OF THE VERB '
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE ')

(TERPRI))
((AND (GETR OBJ?)

(NOT (ASSIGNQ OBJ? HEAD OBJECT VERBCASES)))
(; A simple case of the object being in OBJ?, except that it does

not check semantically with the verb.)
(PCHAR (QUOTE " THE NOUN PHRASE '
(PRINT-REG (GETR OBJ?))
(PCHAR (QUOTE " ' CANNOT BE UNDERSTOOD AS THE OBJECT OF "))
(PCHAR (QUOTE " THE VERB ' 0))
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " • .
(TERPRI))

(T
(; Blocking at this state due to any reason other than those

handled above Causes a list of what was expected at this
state to be printed.)

(PCHAR (QUOTE " ONE OF THE FOLLOWING WAS EXPECTED. "))
(TERPRI)

97

(PCHAR (QUOTE " 1. A SUBJECT COMPLEMEkW (OF A PHRASE "))
(PCHAR (QUOTE " STARTING WITH 'IT) BEGINNING
(PCHAR (QUOTE " WITH 'FOR', 'THAT', OR 'TO'
(PCHAR (QUOTE " (IT IS SILLY 'FOR US TO...')
(PCHAR (QUOTE " 2. A 'TO' COMPLEMENT
(PCHAR (QUOTE " (I TOLD YOU 'TO READ...')
(PCHAR (QUOTE " 3. A PREPOSITION AS PART OF THE VERB "))
(PCHAR (QUOTE " (HE WILL START 'UP'...)
(PCHAR (QUOTE " 4. A NOUN PHRASE ACTING AS THE OBJECT "))
(PCHAR (QUOTE " (I GAVE YOU 'THE...') "))
(TERPRI)))

(VP/THAT?
((AND (OR (VTRANS HEAD)

(DELFORTOCOHP HEAD))
(PossibleMP? T))

(; A transitive verb's object is pushed for (NP-noun phrase)
and successfully found, but an abort was executed because
the phrase cannot be an object.)

(PCHAR (QUOTE " THE NOUN PHRASE '
(PRINT-ANY-STRING *)
(PCHAR (QUOTE " ' CANNOT BE AN OBJECT OF ANY VERB. "))
(TERPRI))

(T
(; The embedded sentence was pushed for and successfully

f,.und, but it does not check semantically as being a
valid complement to the verb of the main clause.)

(PCHAR (QUOTE 0 THE SENTENCE: U))

(TERPRI)
(PRINT-ANY-STRING o)
(TERPRI)
(PCHAR (QUOTE " CANNOT BE UNDERSTOOD AS A 'THAT COMPLEMENT' "))
(PCHAR (MUOTE " PHRASE OF THE VERB '
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE ')
'TERPRI)))

(VP/HEAD/fP
((NOT (OR (DELFORTOCOMP HEAD)

(DELTOCOMP HEAD)
(VTRANS HEAD)))

(; The HEAD verb is not marked in any one of the three ways.
Each of the three arcs from this state has one of the
conditions on it. Therefore, we are blocked.)

(?CdAR (QUOTE " PARSING CANNOT PROCEED BECAUSE THE VERB '
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' IS NOT SUFFICIENTLY DESCRIBED IN THE "))
(PCHAR (QUOTE " DICTIONARY. WE ARE EXPECTING A COMPLEMENT "))
(PCHAR (QUOTE " (DELFORTOCOHP OR DELTOCOMP) OR THE OBJECT "))
(PCHAR (QUOTE " OF A TRANSITIVE VERB (VTRANS) AT THIS POINT. U))
(TERPRI)))

i

98

(S/S/RESUME
(T
(; Trying to resume processing to complete a noun phrase, as

in: 'What man did I meet in England who knew Peter?'
The 'who' signals that the question is really not
finished yet, and that there are more constituents to
the NP 'What man'.)

(PCHAR (QUOTE " CANNOT RESUME PROCESSING OF THE PHRASE i f))

(PRINT-REG (GETR f))
(PCHAR (QUOTE " ' TO PICK UP THE REST OF ITS CONSTITUENTS. "))
(TERPRI)))

(S/S
((AND (WRD (FOR TO))

(GETEEY (QUOTE FORTOCO4P)
HEAD VERBCASES))

(; The FOR/TO complement for HEAD was pushed for, successfully
found, but is semantically invalid.)

(PCHAR (QUOTE " THE PHRASE 0f))
(PRINT-ANY-STRING 9)
(PCHAR (QUOTE " ' CANNOT BE UNDERSTOOD AS A COMPLEMENT i))

(PCHAR (QUOTE " OF THE VERB if))

(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " i.))

(TERPRI))
((AND (NOT (CAT PREP))

(PossibleLOCATION? T))
(; A location phrase was pushed for, successfully found, but is

not semantically valid with the main verb in HEAD)
(PCHAR (QUOTE " THE 'LOCATION' PHRASE if))
(PRINT-ANY-STRING 0)
(PCHAR (QUOTE " ' CANNOT BE UNDERSTOOD IN A SENTENCE "))
(PCHAR (QUOTE N WHERE THE MAIN VERB IS '
(PRINT-RE3 (GETR HEAD))
(PCHAR (QUOTE " ')
(TERPRI))

((AND (NULLR LASTPUNCT)
(GETKEY (QUOTE <TIME>)

HEAD VERBCASES)
(PossibleNP?))

(; A 'time noun phrase' (TIMEMP) was pushed for, found, but is
not semantically valid.)

(PCHAR (QUOTE " THE 'TIME' NOUN PHRASE: "))
(TERPRI)
(PRINT-ANY-STRING C)
(TERPRI)
(PCHAR (QUOTE " CANNOT BE UNDERSTOOD WITH THE VERB 0f))
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' .
(TERPRI))
(T
(; There are many more ways in which a parse car block here.

Some would be caused by a very unusual input strirg, others
would be unable to be detected through simple conditions.
If none of the above conditions are the case, a list of

C Alfi L

99

what is expected at this point is printed.)
(PCHAR (QUOTE " AFTER HAVING COMPLETED A MAIN CLAUSE, ONE OF "))
(PCHAR (QUOTE " THE FOLLOWING WAS EXPECTED.
(TERPRI)
(PCHAR (QUOTE " 1. A COMPLEMENT BEGINNING WITH 'FOR' OR 'TO' "))
(PCHAR (QUOTE " (VERB MUST HAVE 'FORTOCOMP' FEATURE) "))
(PCHAR (QUOTE " I WALKED 'FOR THE FUN OF IT'.))
(TERPRI)
(PCHAR (QUOTE " 2. AN ADVERB "))
(PCHAR (QUOTE " I WALKED 'QUICKLY'. "))
(TERPRI)
(PCHAR (QUOTE " 3. A PREPOSITIONAL PHRASE
(PCHAR (QUOTE " I WALKED 'WITH MY FRIEND'.))
(TERPRI)
(PCHAR (QUOTE " 4. A 'LOCATION' PHRASE U))
(PCHAR (QUOTE " (VERB MUST HAVE '<LOCATION>' RULE) U))

(PCHAR (QUOTE " I WALKED 'WHERE NO MAN HAS BEFORE'. "))
(TERPRI)
(PCHAR (QUOTE " 5. A 'TIME' PHRASE
(PCHAR (QUOTE " (VERB MUST HAVE '<TIME>' RULE)
(PCHAR (QUOTE " I WALKED 'THE OTHER DAY'. "))
(TERPRI)
(PCHAR (QUOTE " 6. AN ADJUNCT PHRASE
(PCHAR (QUOTE " (VERB MUST HAVE APPROPRIATE ADJUNCT RULE "))
(PCHAR (QUOTE " I WALKED, 'SINGING ALL THE WAY'. "))
(TERPRI)
(TERPRI)
(PCHAR (QUOTE " IF THE INPUT STRING DOES SATISFY ONE "))
(PCHAR (QUOTE " OF THE ABOVE CASES, THE SEMANTIC RULES *))
(PCHAR (QUOTE " THAT WERE INVOKED EITHER DO NOT EXIST OR "))
(PCHAR (QUOTE " WERE APPLIED AND FAILED; I.E., THE U))

(PCHAR (QUOTE " CONSTITUENT THAT WAS FOUND DOES NOT U))

(PCHAR (QUOTE " 'MAKE SENSE' USING THE PRESENT LEXICON. 0))
(TERPRI)))

(S/S/PP
((AND (EQ (CC PREP)

(QUOTE TO))
(TAKEINDOBJ HEAD)
(NOT (ASSIGNQ (Of POBJ)

HEAD INDOBJ VERBCASES)))
(; The head of the prepositional phrase is 'TO'. We expect the

object of the preposition to be the indirect object of
the full sentence, but it dos not check semantically.)

(PCHAR (QUOTE " THE OBJECT OF THE 'TO' PREPOSITIONAL PHRASE, U))

(PRINT-ANY-STRING (60 POBJ))
(PCHAR (QUOTE " ', CANNOT BE UNDERSTOOD AS THE INDIRECT *))
(PCHAR (QUOTE " OBJECT OF THE VERB U))
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE * ' U))

(TERPRI))
((AND (EQ (6C PREP)

(QUOTE TO))
(NOT (TAKEINDOBJ HEAD))

(; The preposition is 'TO' and the situation as described In the

100

previous comment is expected; however, in this case, the
HEAD verb cannot even take an indirect object.)

(PCHAR (QUOTE " THE OBJECT OF THE 'TO' PREPOSITIONAL PHRASE, '
(PRINT-ANY-STRING (60 POBJ))
(PCHAR (QUOTE " ', IS EXPECTED TO BE THE INDIRECT OBJECT "))
(PCHAR (QUOTE " OF THE VERB. HOWEVER, '
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' CANNOT TAKE AN INDIRECT OBJECT. "))
(TERPRI))

((AND (EQ (Of PREP)
(QUOTE BY))

(NOT (PASSIVE? ASPECT))
(NOT (EQREG STYPE POSS-ING)))

C; In the case where the preposition is 'BY', the object of the
preposition is expected to be the subject of the sentence.
The sentence is passive or a "possession-ing" as in: 'It
was thrown by John' or 'John's winning was enjoyed by
everyone'. This message and the next three messages
handle problems in interpreting the object of 'BY'.
Here, we have neither passive nor "possession-ing".)

(PCHAR (QUOTE " THE OBJECT OF THE 'BY' PREPOSITIONAL PHRASE, '
(PRINT-ANY-STRING (66 POBJ))
(PCHAR (QUOTE " ', IS EXPECTED TO BE THE SUBJECT OF THE
(PCHAR (QUOTE " SENTENCE. THERE MUST EITHER BE A PASSIVE))
(PCHAR (QUOTE " CONSTRUCTION OR A POSSESSION-'ING'
(PCHAR (QUOTE " CONSTRUCTION AS IN:
(TERPRI)
(PCHAR (QUOTE " IT IS PARSED BY 'ME'.
(PCHAR (QUOTE " FRED'S WINNING WAS ENJOYED BY 'EVERYONE'. "2
(TERPRI)
(PCHAR (QUOTE " NEITHER IS THE CASE HERE. "))
(TERPRI))

((AND (EQ (Ce PREP)
(QUOTE BY))

(PASSIVE? ASPECT))
(; We have the passive, but the object of 'BY' does not check

semantically as being the subject of the verb in HEAD.)
(PCHAR (QUOTE " IN A PASSIVE CONSTRUCTION, THE OBJECT OF THE "))
(PCHAR (QUOTE N 'BY' PREPOSITIONAL PHRASE IS EXPECTED TO BE THE "))
(PCHAR (QUOTE " SUBJECT OF THE SENTENCE. HOWEVER, THE WORD '
(PRINT-ANY-STRING (C0 POBJ))
(PCHAR (QUOTE " ' CANNOT BE UNDERSTOOD AS THE SUBJECT WITH THE "))
(PCHAR (QUOTE " VERB ' "))
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' .
(TERPRI))

((AND (EQ (*e PREP)
(QUOTE BY))

(EQREG STYPE POSS-ING)
(NOT (ASSIGNQ FIRSTNP HEAD OBJECT VERBCASES)))

(; In a 'POSS-ING' sentence, the object of 'BY' is the sentence
subject and the FIRSTNP of the sentence is the sentence
object. Here the FIRSTNP does not check semantically as
the object with the verb in HEAD.)

(PCHAR (QUOTE " IN A POSSESSION-'ING' SENTENCE SUCH AS THIS, "))
(PCHAR (QUOTE " THE FIRST NOUN PHRASE IS EXPECTED TO BE THE "))

_Tl

101

(PCHAR (QUOTE " OBJECT AND THE PREPOS1TIONAL OBJECT IS "))
(PCHAR (QUOTE " EXPECTED TO BE THE SUBJECT. '1)
(TERPRI)
(PCHAR (QUOTE 0 HOWEVER, THE NOUN PHRASE ' if)

(PRINT-REG (GETR FIRSTNP))
(PCHAR (QUOTE " ' CANNOT BE UNDERSTOOD AS THE OBJECT OF THE 0))
(PCHAR (QUOTE " VERB ' "))
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " , "
(TERPRI)

((EQ (29 PREP)
(QUOTE BY))

C; The only other way to block with 'BY' is as in the case above,
except the FIRSTNP as the OBJECT checks out, but the
prepositional object as the SUBJECT doesn't.)

(PCHAR (QUOTE " IN A POSSESSION-'ING' SENTENCE SUCH AS THIS, "))
(PCHAR (QUOTE " THE FIRST NOUN PHRASE IS EXPECTED TO BE THE "))
(PCHAR (QUOTE " OBJECT AND THE PREPOSITIONAL OBJECT IS EXPECTED ")5
(PCHAR (QUOTE " TO BE THE SUBJECT. ")
(TERPRI)
(PCHAR (QUOTE " THE NOUN PHRASE '
(PRINT-REG (GETR FIRSTNP))
(PCHAR (QUOTE 0 ' IS ABLE TO BE UNDERSTOOD AS THE OBJECT, BUT if))

(PRINT-ANY-STRING (Of POBJ))
(PCHAR (QUOTE " ' CANNOT BE UNDERSTOOD AS THE SUBJECT WITH THE "))
(PCHAR (QUOTE " VERB ' "))
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' .

(TERPRI))
((AND (EQ (00 PREP)

(QUOTE OF))
(NOT (EQREG STYPE POSS-ING)))

C; Wher the head of the prepositional phrase is 'OF', we expect
to have a possession-'ing' sentence. If the verb cannot
have an 'OFSUBJECT', then the FIRSTNP (if there is one)
is the SUBJECT and the prepositional object is the OBJECT;
otherwise, there should not be a FIRSTNP and the
prepositional object is the SUBJECT. This first 'OF'
condition handles not having a possession-'ing' sentence.
The next three handle aborts due to the OBJECT and/or
SUBJECT not checking semantically.)

(PCHAR (QUOTE " A PREPOSITIONAL PHRASE STARTING WITH 'OF' AFTER "))
(PCHAR (QUOTE " THE END OF THE MAIN CLAUSE CAN ONLY BE "))
(PCHAR (QUOTE " UNDERSTOOD IN A POSSESSION-'ING' SENTENCE, ")
(PCHAR (QUOTE " SUCH AS: i))

(TERPRI)
(PCHAR (QUOTE " ...JOHN'S SENDING OF THE MESSAGE... "))
(TERPRI))

((AND (EQ (00 PREP)
(QUOTE OF))

(NOT (OFSUBJECT HEAD))
(GETR FIRSTNP)
(NOT (ASSIGNQ FIRSTNP HEAD SUBJECT VERBCASES)))

C; FIRSTNP fails as SUBJECT.)
(PCHAR (QUOTE " IN A POSSESSION-'ING' SENTENCE SUCH AS THIS, "))
(PCHAR (QUOTE " THE 'OF' PREPOSITIONAL OBJECT IS THE OBJECT OF "))

x

- - -

102

(PCHAR (QUOTE " THE SENTENCE AND THE PHRASE '

(PRINT-REG (GETR FIRSTNP))
(PCHAR (QUOTE " ' IS EXPECTED TO BE THE SUBJECT. "))
(TERPRI)
(PCHAR (QUOTE " HOWEVER, IT CANNOT BE UNDERSTOOD AS THE 0))

(PCHAR (QUOTE " SUBJECT WITH THE VERB '

(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' .

(TERPRI))
((AND (EQ (00 PREP)

(QUOTE OF))
(NOT (OFSUBJECT HEAD)))

(; Prepositional Object fails as OBJECT.)
(PCHAR (QUOTE " IN A POSSESSION-'ING' SENTENCE SUCH AS THIS, "))

(PCHAR (QUOTE " THE 'OF' PREPOSITIONAL OBJECT IS EXPECTED "))

(PCHAR (QUOTE " TO BE THE OBJECT OF THE VERB. "))
(TERPRI)
(PCHAR (QUOTE " HOWEVER, '

(PRINT-ANY-STRING (40 POBJ))
(PCHAR (QUOTE " ' CANNOT BE UNDERSTOOD AS THE OBJECT WITH THE "))
(PCHAR (QUOTE W VERB ' "))
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' .

(TERPRI))
((EQ (Of PREP)

(QUOTE OF))
(; The only other way 'OF' can block is if the prepositional

object should be the SUBJECT, but it doesn't check out.)

(PCHAR (QUOTE " THE OBJECT OF 'OF' 1S EXPECTED TO BE "))

(PCHAR (QUOTE " THE SUBJECT OF THE SENTENCE, BUT '
(PRINT-ANY-STRING (*C POBJ))
(PCHAR (QUOTE " ' CANNOT BE UNDERSTOOD AS THE SUBJECT WITH '

(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' .

(TERPRI))
(T
C; If none of the above, the prepositional phrase begar with

a preposition other than 'TO', 'BY', or 'OF', or it began

with one of those but did not need to be the SUBJECT or

OBJECT. In either case, a general prepositional phrase
semantic check failed.)

(PCHAR (QUOTE " THE PREPOSITIONAL PHRASE BEGINNING WITH))

(PRINT-ANY-STRING (#6 PREP))
(PCHAR (QUOTE " ' CANNOT BE UNDERSTOOD WITH THE VERB '
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' .

(TERPRI)))

103

(NP/PRO
(T
(; We can block here only it the pronoun cannot be understood

when used with the head noun and any other modifiers of
the head noun that there may be. The noun phrase Is
believed to be ending with the pronoun.)

(PCHAR (QUOTE " THE PRONOUN ' "5
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " ' IS BELIEVED TO END THE NOUN PHRASE. THE "))
(PCHAR (QUOTE " NOUN PHRASE IS UNABLE TO BE UNDERSTOOD DUE "))
(PCHAR (QUOTE " TO INCOMPLETENESS OR INCONSISTENCY OF THE "))
(PCHAR (QUOTE " MODIFIERS. "))
(TERPRI)))

.DET/
(T
(; We can block here if 'NOT' was found and state DET/ was

re-entered; we are looking for (but not finding) a
determiner or an adverb followed by a comparative.)

(PCHAR (QUOTE " THE WORD 'NOT' AS PART OF A DETERMINER PHRASE ")
(PCHAR (QUOTE " REQUIRES A DETERMINER, OR AN ADVERB FOLLOWED W55
(PCHAR (QUOTE " BY A COMPARATIVE, AFTER IT; AS IN: "))
(TERPRI)
(PCHAR (QUOTE " NOT 'THE' LEAST OF IT IS...
(PCHAR (QUOTE " NOT 'REALLY MORE THAN' THREE BOYS WERE... "))
(TERPRI)))

.BASENP/NotVorADJ
((AND (CATS (NPR N))

(GETR ADVS))
C; We can have a noun or proper noun only If we have already

used the adverbs with the adjective or participle they
modify. This allows 'QUICKLY RUNNING' FRED and 'VERY
UGLY' DOG, but not 'QUICKLY FRED' or 'VERY DOG'.)

(PCHAR (QUOTE " THE NOUN '
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " ' IS UNABLE TO BE UNDERSTOOD HERE BECAUSE ")
(PCHAR (QUOTE " THE ADVERB(S) ' 0))
(PRINT-REG (GETR ADVS))
(PCHAR (QUOTE " ' CANNOT BE PART OF THE NOUN PHRASE UNLESS "))
(PCHAR (QUOTE " IT IS FOLLOWED BY A PARTICIPLE OR AN "))
(PCHAR (QUOTE " ADJECTIVE, AS IN: "8
(TERPRI)
(PCHAR (QUOTE " ...'QUICKLY MELTING' BUTTER...
(PCHAR (QUOTE " ...'VERY POOR' PERSON...
(TERPRI))

((AND (CAT YEAR)
(GETR ADVS))

(; As above, except that we have a year instead of a noun.)
(PCHAR (QUOTE " THE YEAR '
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " ' CANNOT BE UNDERSTOOD HERE BECAUSE A ")
(PCHAR (QUOTE " PARTICIPLE OR AN ADJECTIVE IS EXPECTED AFTER 0))
(PCHAR (QUOTE " THE ADVERB(S) '))

2-.

104

(PRINT-REG (GETR ADVS))
(PCHAR (QUOTE " ', AS IN: "))
(TERPRI)
(PCHAR (QUOTE " ...'VERY EXCITING' 1980...
(PCHAR (QUOTE " ...'POLITICALLY WILD' 1974.,. .))
(TERPRI))

((AND (CAT MONTH)
(GETR DET?))

(; For the month to be the beginning of a date, there should be
no determiners.)

(PCHAR (QUOTE " EXPECTING THE MONTH ' 0))
(PRINT-ANY-STRINO LEX)
(PCHAR (QUOTE U TO BE THE BEGINNING OF A DATE. HOWEVER, "))
(PCHAR (QUOTE " THERE CANNOT BE ANY DETERMINERS BEFORE "))
(PCHAR (QUOTE " IT. HERE WE HAVE '
(PRINT-REG (GETR DET?))
(PCHAR'(QUOTE " 0))
(TERPRI))

((AND (WRD (AND ,))
(EQ (CAAR (GETR PREMODS))

(QUOTE NOUN)))
(; Wher using 'AND' or ',' to conjoin something to a noun, the

something to be conjoined must also be a noun.)
(PCHAR (QUOTE " ONLY ANOTHER NOUN CAN BE CONJOINED "))
(PCHAR (QUOTE " WITH THE NOUN
(PRINT-REG (GETR PREMODS))
(PCHAR (QUOTE " ', AS IN: U))

(TERPRI)
(PCHAR (QUOTE " THE FIRST ROBIN, FLOWER AND LEAF...
(TERPRI))

((AND (WRD (AND ,))
(SELECTQ (CAAR (GETR PRENODS))

((PRESPART PASTPAST ADJ) T)
NIL))

(; When using 'AND' or ',' to conjoin something to a present
participle, past participle, or adjective, the
something to be conjoined must be a verb or an
adjective.)

(PCHAR (QUOTE " A VERB OR ADJECTIVE 1S EXPECTED AFTER THE I f))
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " I AS SOMETHING TO BE JOINED TO ' U))
(PRINT-REG (GETR PREMODS))
(PCHAR (QUOTE U . U))

(TERPRI))
((WAD (AND ,))

If blocked at 'AND' or ',' for any other reason, attempting
an illegal conjunction.)

(PCHAR (QUOTE P UNABLE TO FORN THE CONJUNCTION. "))
(PRINT-REG (GETR PREMODS))
(PCHAR (QUOTE U CANNOT HAVE ANY JOINED PHRASES. U))

(TERPRI))
((CAT V)
(; We should not have a verb here. Valid ellipsis such as

'THE LARGEST WAS...' is handled in NP/PartitiveDET.
Here we would have 'THE WAS...'. There is also the
possibility of a present participle or past participle

105

which was not marked as being such.)
(PCHAR (QUOTE " A VERB CANNOT BE UNDERSTOOD HERE. '))
(PCHAR (QUOTE 6 THE NOUN PHRASE WAS BEING CONSTRUCTED; "))
(PCHAR (QUOTE " ANOTHER CONSTITUENT TO BE ADDED TO IT "))
(PCHAR (QUOTE " WAS EXPECTED. PERHAPS YOU ENTERED AN "))
(PCHAR (QUOTE " INVALID ELLIPSIS , "))
(PCHAR (QUOTE 0 OR THIS VERB IS A PRESENT PARTICIPLE "))
(PCHAR (QUOTE 0 OR A PAST PARTICIPLE BUT IS NOT MARKED i))
(PCHAR (QUOTE " AS SUCH IN THE DICTIONARY. "))
(TERPRI)))

(BASEMP/HEAD?
((AND (WED 'S)

(NOT (AND (PLURAL'S (CAR (GETR PREMODS)))
(DET/NUMBERCHECK DET? (QUOTE PLURAL) HEAD))))

(; The 'S was used to pluralize a noun that cannot be made
plural in that way.)

(PCHAR (QUOTE " THE NOUN I
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' CANNOT BE MADE PLURAL BY ADDING 'S. "))
(TERPRI))

((NOT (OR (WRD 'S)

(DET/NUMBERCHECK DET? NIL HEAD)))
(; The determiner and the head noun disagree in number.)
(PCHAR (QUOTE " THE DETERMINER
(PRINT-REG (GETR DET?))
(PCHAR (QUOTE " I AND THE HEAD NOUN
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' DO NOT AGREE IN NUMBER (SINGULAR/PLURAL). i))

(TERPRI))
(T
C; If blocked here not because of any of the above, thee the

semantic check on the base noun phrase (BASENP) usini
the head noun (HEAD), the determiner (DET?) and the
premodifiers (PREODS) was not successful.)

(PCHAR (QUOTE " THE NOUN PHRASE CONSTRUCTED SO FAR IS "))
(PCHAR (QUOTE " NOT ABLE TO BE UNDERSTOOD. "))
(TERPRI)
(PCHAR (QUOTE " THE DETERMINER: 0))
(TERPRI)
(PRINT-REG (GETR DET?))
(TERPRI)
(PCHAR (QUOTE " AND THE PREMODIFIER: i))

(TERPRI)
(PRINT-REG (GETR PREMODS))
(TERPRI)
(PCHAR (QUOTE " ARE NOT ABLE TO BE UNDERSTOOD AS BEING "))
(PCHAR (QUOTE " CONSISTENT WITH: i))

(PRINT-REG (GETR HEAD))
(TERPRI)))

-ta

i'~ - -- - - ~ 4S S

106

(BASENP/SPLIT
(T
(; The parse will block here due to disagreement in number

between the determiner and the noun or because the
semantic check of the base noun phrase failed. This
is the Sam3 situation as with the state BASENP/HEAD?
except that In that state, having 'S could cause a
problem. Since we don't have the 'S here, we car use
BASENP/HEAD?'s condition/actior pairs and the first
pair will just always be skipped.)

(CONDACT BASENP/HEAD?)))

(DATE/DAY&MONTH
(T
(; We can block here only if we had a noun phrase that Was

expected to have a FRAMETYPE of <YEAR>, but It did
not. In other words, instead of a year, such as 11990',
a 'year-phrase', such as 'THE YEAR THAT...', Is
acceptable (but, only if the phrase has beer"semantically defined" as being an instance of <YEAR>).)

(PCHAR (QUOTE " A NOUN PHRASE DEFINING THE YEAR OF "))
(PCHAR (QUOTE " THE DATE WAS EXPECTED. THE PHRASE ' f))
(PRINT-ANY-STRING #)
(PCHAR (QUOTE " ' CANNOT BE INTERPRETED AS A YEAR. "))
(TERPRI)))

(DATE/END
(T
(; The end of the date (and the noun) phrase is expected. We

block here if DAY, MONTH, and YEAR do not form a
semantically valid <DATE>.)

(PCHAR (QUOTE " THE DATE CONSTRUCTION IS BELIEVED TO BE "))
(PCHAR (QUOTE " COMPLETED. HOWEVER, THE COMPONENTS "))
(TERPRI)
(COND (OETR DAY)

(PCHAR (QUOTE v DAY: W))

(PRINT-REG (GETR DAY))))
(TERPRI)
(COND ((GETR MONTH)

(PCHAR (QUOTE " MONTH: "))
(PRINT-REG (GETR MONTH))))

(TERPRI)
(COND ((ETR YEAR)

(PCHAR (QUOTE 6 YEAR: "))
(PRINT-REG (GETR YEAR))))

(TERPRI)
(PCHAR (QUOTE " ARE UNABLE TO BE UNDERSTOOD TOGETHER "))
(PCHAR (QUOTE " AS A VALID DATE. "))
(TERPRI)))

Ai 111 i

107

(NP/PartitiveDET
(T
(; We can block here only if a word is not classified fully

as a NOUN, ADJ, PASTPART, etc. or if the sentence is
not raammatical. Whatever the case, what was expected
is printed.)

(PCHAR (QUOTE " AFTER A PARTITIVE DETERMINER SUCH AS ' 0))
(PRINT-REG (GETR PARTITIVE/DET))
(PCHAR (QUOTE " ', ONE OF THE FOLLOWING WAS EXPECTED. "))
(COND ((GETR ALLDET)

(PCHAR (QUOTE " 'THE' OR A POSSESSIVE PROUNOUN N))

(PCHAR (QUOTE " (ALL 'THE' PEOPLE...)
(PCHAR (QUOTE " (ALL 'HER' PAPERS...)

(PCHAR (QUOTE " A NOUN
(PCHAR (QUOTE " (THE LARGEST 'TREE'...)
(PCHAR (QUOTE " A PRESENT OR PAST PARTICIPLE
(PCHAR (QUOTE " (THE FIRST 'DEFEATED' ARMY...) N))

(PCHAR (QUOTE " AN ADJECTIVE "))
(PCHAR (QUOTE " (TWO 'QUICK' FOXES...) N))
(PCHAR (QUOTE " AN ADVERB "))
(PCHAR (QUOTE " (THE FIRST 'SLOWLY' MOVING VEHICLE...) N))
(PCHAR (QUOTE N AN 'OF' PREPOSITIONAL PHRASE N))

(PCHAR (QUOTE " (THE LAST THREE 'OF' THE MEN...) N))

(TERPRI)
(PCHAR (QUOTE N IF NONE OF THE ABOVE ARE TRUE, THEN N))

(PCHAR (QUOTE " AN ELLIPTICAL REFERENCE TO A PREVIOUS N))

(PCHAR (QUOTE " NOUN (ELLIPTICAL ANAPHORA) IS EXPECTED. N))

(PCHAR (QUOTE " (THE FIRST WAS... OR THREE ARE...) "))
(PCHAR (QUOTE " HOWEVER, THERE IS NO EVIDENCE TO INDICATE N))

(PCHAR (QUOTE " THAT THIS IS THE CASE HERE EITHER. N))

(TERPRI)))

(NPLIST/
(T
(; We can block here only if the newly found noun phrase cannot

be compatible with the noun phrase(s) it is conjoined to.)
(PCHAR (QUOTE " THE NOUN PHRASE I a))
(PRINT-ANY-STRING *)
(PCHAR (QUOTE " I IS NOT COMPATIBLE WITH THE NOUN PHRASE(S) "))
(PCHAR (QUOTE " THAT IT IS CONJOINED TO. N))

(TERPRI)))

(NPLIST/NP
'T
(; We can block here only If the conjoining of the noun phrases

was not correct.)
(PCHAR (QUOTE " CONJOINED NOUN PHRASES WERE EXPECTED, N))

(PCHAR (QUOTE " BUT THE STRUCTURE OF THE SENTENCE "))
(PHAI (QUOTE " AT THIS POINT MAKES SUCH AN INTEPRETATION N))

(PCHAR (QUOTE " IMPOSSIBLE. 0))
(TERPRI)))

*1~

108

:NP/INTID
((NOT (ASSIGNQ INTIDS HEAD IDENTIFIER POSTNODCASES))
; We will block at this state if the integer identifier(s) are

not able to check semantically with the HEAD noun (this
condition) or it they do check alone with the HEAD, but
do not check along with all of the other modifiers of
HEAD (the following condition).)

(PCHAR (QUOTE * THE INTEGER(S) "))
(PRINT-REG (GETR INTIDS))
(PCHAR (QUOTE 0 CANNOT SE UNDERSTOOD AS IDENTIFYING '
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE "))
(TERPRI))

(T
(PCHAR (QUOTE " ALTHOUGH THE INTEGER IDENTIFIER(S) "))
(PRINT-REG (GETR INTIDS))
(PCHAR (QUOTE " ARE UNDERSTOOD AS IDENTIFIERS OF ' 0))
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ', THE OTHER MODIFIERS OF IT "))
(PCHAR (QUOTE " ARE NOT CONSISTENT WITH THIS "))
(PCHAR (QUOTE * INTERPRETATION. "))
(TERPRI)))

(NP/APPOSITE/NP
((NOT (W1D ,))
(; We block here if the appositive does not end (as it started)

with a comma, or if the appositive phrase does not check
semantically with the HEAD noun.)

(PCHAR (QUOTE " AN APPOSITIVE NON PHRASE, SUCH AS '
(PRINT-REG (GETR APPOSITE))
(PCHAR (QUOTE " ', SHOULD END WITH A COMMA. "))
(TERPRI))

(T
(PCHAR (QUOTE 0 THE APPOSITIVE NOUN PHRASE '
(PRINT-REG (GETR APPOSITE))
(PCHAR (QUOTE " I CANNOT BE UNDERSTOOD AS A MODIFIER OF '
(PRINT-RtG (GETR HEAD))
(PCHAR (MUOTE "))
(TEXPRI)))

*1

109

(NP/POSTMODS?
((LISTP *)
; If is a list, then its value is the prepositional phrase

that was found at the end of the noun phrase. We block
here if it does not check semantically as a modifier of
the HEAD noun.)

(PCHAR (QUOTE " THE PREPOSITIONAL PHRASE '
(PRINT-ANY-STRING C)
(PCHAR (QUOTE " ' CANNOT BE UNDERSTOOD AS A MODIFIER "))
(?CHAR (QUOTE " OF THE NOUN '
(PRINT-REG (GETR HEAD))~~~(PCHAR (QUOTE ' "5

(TERPRI))
((OR (CAT INTEGER)

(WRD (NUMBER NUMIERS)))
(; This handles the case where (from NP/BASENP) a noun was

numerically identified, but it is not allowed tc be so
identified (semantically), 3s the jump to NP/POSTMODS?
was taken, ard here we block.)

(PCHAR (QUOTE " THE NOUN '
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' CANNOT HAVE A NUMERIC IDENTIFIER. "))
(TERPRI))

(T
(; The noun phrase is believed to be complete. The semantic

check on the Consistency and completeness of the
modifiers of the HEAD noun failed.)

(PCHAR (QUOTE " THE NOUN PHRASE IS BELIEVED TO BE "))(PCHAR (QUOTE " COMPLETE. HOWEVER, THE MODIFIERS OF ")
(PRINT-REG (GETR HEAD))

(PCHAR (QUOTE N' ARE NOT CONSISTENT; THEY ARE NOT "))
(PCHAR (QUOTE " ALL ABLE TO BE UNDERSTOOD. i))

(TERPRI)))

(NP/SMOD?
(T
(; We will block here if the clause-type postmodflier was

found but does not check semantically.)
(PCHAR (QUOTE " THE CLAUSE '
(PRINT-ANY-STRING C)
(PCHAR (QUOTE " ' IS NOT ABLE TO BE UNDERSTOOD i))

(PCHAR (QUOTE " AS A MODIFIER OF '
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE " ' "
(TERPRI)))

'NP/RESUHE
((EQ (CAAR C)

(QUOTE PP))
(; The prepositional phrase does not chock semantically (this

condition) or the clause-type postmodifier does not
cheock semantically (next condition).)

(PCHAR (QUOTE " THE PREPOSITIONAL PHRASE
(PRINT-ANY-STRING C)

110

(PCHAR (QUOTE ' IS NOT ABLE TO BE UNDERSTOOD "))
(PCHAR (QUOTE " AS A MODIFIER OF '
(PRINT-REG (GETR HEAD))
(PCHAR (QUOTE
(TERPRI))

(T
(CONDACT NP/SMOD?)))

S/PP is entered via a transition from state 5/ after a preposl..anal
phrase has been successfully pushed for and popped. If
there is a "," here, it is consumed and a transition is
made to state S/, otherwise the transition is made to
state S/ without consuming any of the input string.

S/ADJUNCT is entered via a transition from state S/ after ar adjunct has
been succesatully pushed for and popped. If there is a
"," here, it is Consumed and S/ADJUNCT is re-entered. if
there is a 'THEN' and we had an IF as a binder, then the
'THEN' is consumed and a transition made to state S/.
Otherwise, the transition is made to S/ with no consump-
tion of the input string.

S/DECL is entered via a transition from S/, P/CONP, SMOD/1, SMOD/RELPP or
SMOD/WHENorWHERE. In all cases, a declarative sentence is
expected. If there is a 'FOR', 'TO', or 'THAT' here, a
JUMP to S/SUBJCOMP? is taken. If we have had a relative
clause with an explicit subject and a relative pronoun
('THE MAN WHOM THE BOY TOLD US ABOUT.'), a JUMP to S/NP is
taken. Otherwise, a noun phrase is examined by a PUSH for
state NP/.

Q/HOW is entered via a transition from state Q/. We had the word 'HOW'
and now have on adjective or an adverb. After the ap-
propriate register-setting actions, state S/NP is entered,
the adjective or adverb having been consumed.

S/SUBJCOMP? is entered after finding a 'FOR', 'TO' or 'THAT' in state
S/DECL. If the word is not 'FOR' or 'TO' state NP/ is
PUSHed; if it is 'FOR', 'TO' or 'THAT', then SMOD/ is
PUSHed. We are looking for the subject or subject comple-
ment.

S/NP is entered from ADJUNCT/, Q/, Q/HOW, S/, S/DECL, S/SUBJCOMP?,
SMOD/I, SMOD/FOR/COMPL, SMOD/FOR/UP, SMOD/NPONLY, or
SHOD/RELPP. In all cases, a verb or adverb is expected
after having had the word 'TO', the wori 'THERE', the word
'HOW' followed by an adjective or an adverb, a noun
phrase, or a modifying noun phrase. If a verb is or the
hold list, a JUMP Is taken to state VP/V; If the currert
word is an adverb, it is consumed and S/NP re-entered;
otherwise, a JUMP to S/NP/1 Is made.

- 1

111

VP/HEAD is entered from VP/ASSIGNHEAD, VP/UNTENSEDandPASTPART, or VP/V.
Either there is a passive Construction and the verb has
been found, the main verb can take a preposition and it
was found, or a noun phrase was found to complete a
'THERE' phrase. Whatever the case, the verb is complete
and objects are expected. If the head verb is intransi-
tive or the sentence is a POSS-ING ("MY LEAVING WAS..."),
then a JUMP to VP/INTRANS is made; otherwise, a JUMP to
VP/GETOBJ.

VP/INTRANS is entred via a transition from VP/HEAD above. If the verb
can also be transitive and there is evidence for an object
(one has been found but not placed yet, the verb can take
a 'FOR/TO' Complement, or a NP is possibly next), then a
JUMP to YP/GETOBJ is taken; otherwise, a JUMP to VP/OBJ.

MP/ is entered via a JUMP from NP/PartitiveDET or a PUSH from a number of
states. INP/ and MP/ form the beginning state group of
the noun phi se analysis. If the current word is 'BOTH'
or 'EITHER', NPLIST/ is entered and the word is consumed.
If a noun phrase is on the hold list, state NP/VIR or
state NP/WAITVIR is JUMPED to. Otherwise, a PUSH for 1NP/
is made.

UP/VIR is entered from NP/ above. A noun phrase is on the hold list. If
there is now another possible noun phrase, 1P/ is PUSHed
for. Otherwise, the held noun phrase is removed and a
transition to state POPIT/ is made.

MP/WAITVZR is entered from NP/ above. A noun phrase is on the hold list
and there may be another one beginning here. The held
noun phrase is removed from the hold list and state POPIT/
is entered. Because of a WAIT at that arc, state INP/ is
first PUSHed for, and, if successful before the WAIT is
over, State NPLIST/NP is entered.

MP/BASENP is entered from BASENP/SPLIT, BASENP/HEAD?, NP/PartitiveDET,
IMP/, NPLIST/NP, or NP/PRO. The noun phrase may be com-
pleted. Possessives (' or 'S), integer identifiers,
POSS-ING participle, or appositive phrases are looked for.
If none of the above, NP/POSTMODS? is entered to find any
prepositional or relative clause postmodifiers.

INP/ is PUSHed for from NP/ above. If a year, date, string, pronoun, or
determiner is here, BASENP/, NP/BASENP, NP/PRO, or DET/ is
entered. Otherwise, state BASENP/ is JUMPed to.

MP/POSS is entered from NP/BASENP. The determiners and head noun have
been found, and a "'" or a "'S" indicating a possessive
was consumed. State DET/POSTARTS? is PUSHed to find
further additions to the noun phrase - ordinals, numbers,
superlatives, etc.

NP/APPOSITE is entered via a transition from NP/BASENP. The noun phrase
is believed to be completed, a "," was found, and the head
noun car take an appositive phrase. State NP/ is PUSHed

112

to analyze the appositive.

NP/POSTMODS?/PP is entered from NP/RESUME or NP/POSTMODS?. In both
cases, a prepositional phrase (as a noun phrase modifier)
was Just consumed. If there is a "," here and a preposi-
tion following that, the comma is consumed and
MP/POSTNODS? entered. Otherwise, a JUMP to NP/POSTMODS?
is made.

BASENP/ is entered from 1NP/, NP/PartitiveDET, or DET/POSTARTS?. In the
first case, no determiners, dates, strings, or pronouns
were found at the beginning of the noun phrase; the "base"
of the noun phrase can be looked for. In the second case.
a partitive determiner in a short form (no prepositional
phrases) was found and the "base" of the noun phrase is
next. In the last case, a year was found, or there are no
more ordinals, numbers, superlatives, etc. - the deter-
miner is completed and the mbase" of the phrase is next.
If the current word is an adjective, present participle,
or past participle, BASENP/VorADJ is JUMPed to. If It 1s
both a noun and an adjective, present participle, or past
participle (such as 'GREEN', 'FRAME', etc.), then a JUMP
is made to BASENP/HARD. Otherwise, BASENP/NotVcrADJ is
JUMPed to.

SASENP/VorADJ is entered from BASENP/ above. This transition was taken
because the current word was an adjective, present parti-
ciple, or past participle. The three arcs in this state
each handle one of the three cases. Because there are no
conditions or semantic ABORTs, this state serves to set
registers; it cannot block the parse. BASENP/ is entered
in the adjective and past participle cases, BASENP/H£AD?
in the present participle case.

3ASENP/HARD is entered via a transition from BASENP/ above. If there
have been no adverbs, then the word is consumed and
BASENP/HEAD? entered. Otherwise, we have the situation as
described in BASENP/VorADJ above. (If there were no ad-
verbs, we take the noun interpretation of the word.)

DATE/MONTH is entered from BASENP/NotVorADJ. There were no determiners
and a month was consumed. The date may be in any of the
following forms: 'MAY THE...', 'MAY 18...', 'MAY
SIXTH...', or 'MAY 1980'. If the current word is 'THE',
it is consumed and DATE/MONTH re-entered. If it is ar
integer (less than 32), the day is found and a transition
taken to DATE/DAY&MONTH. If it is an ordinal (other than
'LAST'), the day is found and DATE/DAY&MONTH entered.
Otherwise, a JUMP to DATE/DAY&MONTH is taken.

DET/POSTARTS? is entered from DET/, RELNP/WHOSE, or
PARTITIVERELNP/POSTARTS?. In all cases, the beginning of
a determiner was found ('THE', a quantity, an ordinal,
etc.). This state picks up the remaining parts of the
determiner. If the current word is a year, BASENP/ is
JUMPed to. If it is a month and there have been nc

113

ordinals or superlatives, but there was a quantity, then
DATE/DAY&MONTH is entered (it's a date). Superlatives,
ordinals, and integers are consumed and DET/POSTARTS? re-
entered. If there was a partitive determiner, a JUMP to
NP/PartitiveDET is taken. Otherwise, the determiner must
be completed, and a JUMP to BASENP/ is made.

[Note: All of the BAKSTKO messages wore written, not
Just those for the S, VP, and NP groups. The
action (function) PRINT-EM defined below is
used by some of the OBAKSTKI messages to output
what is known about the main sentence.1

(DEFPROP
PRIMNT-EM

(LAMBDA X
(PCHAR (QUOTE " IN THE MAIN SENTENCE: "))
(COND ((GETR SUBJECT)

(TERPRI)
(PCHAR (QUOTE " SUBJECT UNDERSTOOD TO BE: "))
(PRINT-REG (GETR SUBJECT))))

(COND ((GETR HEAD)
(TERPRI)
(PCHAR (QUOTE " VERB UNDERSTOOD TO BE: "))
(PRINT-REG (GETR HEAD))))

(COND ((GETR OBJECT)
(TERPRI)
(PCHAR (QUOTE " OBJECT UNDERSTOOD TO BE: "))
(PRINT-REG (GETR OBJECT))))

(COND ((GETR INDOBJ)
(TERPRI)
(PCHAR (QUOTE " INDIRECT OBJECT UNDERSTOOD "))
(PCHAR (QUOTE " TO BE: "))
(PRINT-REG (GETR INDOBJ)))))

FEXPR)

(*BAKSTKeADJUNCT/BECAUSE
((AND (EQREG BINDER BECAUSE)

(EQREG STYPE ADJUNCT))
C; The error occurred while processing the adjunctive embedded

sentence.)
(PCHAR (QUOTE " TRIS ERROR OCCURRED WHILE THE SYSTEM "))
(PCHAR (QUOTE " WAS INTERPRETING THE EMBEDDED SENTENCE "))
(PCHAR (QUOTE " AS AN ADJUNCT TO THE MAIN SENTENCE. "))
(PCHAR (QUOTE " EVERYTHING BEFORE THE 'BECAUSE' WAS UNDERSTOOD. "))
(TERPRI)
(TERPRI)
(PRINT-EM)
(TERPRI)))

i I I

114

(OBAKSTK*ADJUNCT/BINDER
((AND (EQREG STYPE ADJUNCT)

(NOT (WRD THE)))
(; The error occurred as above, except that the BINDER is not

'BECAUSE'.)
(PCHAR (QUOTE " THIS ERROR OCCURRED WHILE THE SYSTEM "))
(PCHAR (QUOTE " WAS INTERPRETING THE EMBEDDED SENTENCE "))
(PCHAR (QUOTE " (BEGINNING WITH '
(PRINT-ANY-STRING LEX)
(PCHAR (QUOTE " ') AS AN ADJUNCT TO THE MAIN SENTENCE. "))
(TERPRI)
(TERPRI)
(PRINT-EM)
(TERPRI)))

(OBAKSTKOS/ADJUNCT
((AND (EQ (GetPATHR ADJUNCT BINDER)

(QUOTE IF))
(WRD THEN))

(; The error occurred while parsing the 'THEN' sentence part
of an 'IF <sent 1> THEN <sent 2>' phrase.)

(PCHAR (QUOTE " THIS ERROR OCCURRED WHILE THE SYSTEM "))
(PCHAR (QUOTE " WAS INTERPRETING THE MAIN SENTENCE "))
(PCHAR (QUOTE " BEGINNING AFTER 'THEN' FOLLOWING "))
(PCHAR (QUOTE " THE ADJUNCT '

(PRINT-REG (GETR ADJUNCT))
(PCHAR (QUOTE " ' "
(TERPRI))
(T
(; The error occurred during the processing of the main

sentence after the adjunct (but not 'IF ...THEN'...)
(PCHAR (QUOTE " THIS ERROR OCCURRED WHILE THE SYSTEM "))
(PCHAR (QUOTE " WAS INTERPRETING THE MAIN SENTENCE "))
(PCHAR (QUOTE " FOLLOWING THE ADJUNCT '
(PRINT-REG (GETR ADJUNCT))
(PCHAR (QUOTE " .
(TERPRI)))

(*BAKSTK*S/PP

(T
(; This error occurred while processing the main sentence

after a proposed prepositional phrase.)
(PCHAR (QUOTE " THIS ERROR OCCURRED WHILE THE SYSTEM "))
(PCHAR (QUOTE " WAS INTERPRETING THE MAIN SENTENCE "))
(PCHAR (QUOTE FOLLOWING THE PREPOSITIONAL PHRASE. "))
(TERPRI)))

115

(*BAKSTKOSMOD/RELPP
(NOT (WRD TO))
(; The modifying phrase began with a prepositional phrase.

The error occurred after the prepositional/modifying
phrase, while processing the embedded sentence.
(THE DOG TO WHICH 'I GAVE THE BONE.', THE MAN FROM
WHOSE WORDS 'WE ALL DRAW INSPIRATION.').)

(PCHAR (QUOTE " THIS ERROR OCCURRED WHILE THE SYSTEM "))
(PCHAR (QUOTE " WAS INTERPRETING AN EMBEDDED SENTENCE "))
(PCHAR (QUOTE " WITHIN THE MODIFYING PHRASE THAT "))
(PCHAR (QUOTE " BEGAN WITH THE PREPOSITION '
(PRINT-REG (GETR HEADPREP)
(PCHAR (QUOTE " ' .
(TERPRI)))

(*BAKSTKOSMOD/WHENorWHERE

(T
C; This error occurred during the processing of the embedded

sentence following the 'WHEN' or 'WHERE'. (FRED WAS
EMBARRASSED WHEN 'IT HAPPENED'.))

(PCHAR (QUOTE " THIS ERROR OCCURRED WHILE THE SYSTEM "))
(PCHAR (QUOTE " WAS INTERPRETING THE PHRASE BEGINNING WITH '
(PRINT-REG (GETR RELWRD))
(PCHAR (QUOTE " ' AS AN EMBEDDED SENTENCE MODIFYING "))
(PCHAR (QUOTE " THE MAIN SENTENCE. "))
(TERPRI)
(TERPRI)
(PRINT-EM)
(TERPRI)))

(OBAKSTK*VP/THAT?

(T
(; This error occurred during the processing of an embedded

sentence following a verb that takes a 'THAT' complement
(with or without the actual word 'THAT').)

(PCHAR (QUOTE " THIS ERROR OCCURRED WHILE THE SYSTEM "))
(PCHAR (QUOTE " WAS INTERPRETING THE EMBEDDED SENTENCE "))
(PCHAR (QUOTE " AS A 'THAT' COMPLEMENT OF THE MAIN "))
(PCHAR (QUOTE " SENTENCE. ")
(TERPRI)
(TERPRI)
(PRINT-EM)
(TERPRI)))

